首页> 外文期刊>ACS nano >Self-Recovery Superhydrophobic Surfaces: Modular Design
【24h】

Self-Recovery Superhydrophobic Surfaces: Modular Design

机译:自恢复超疏水表面:模块化设计

获取原文
获取原文并翻译 | 示例
           

摘要

Superhydrophobicity, the enhanced hydrophobicity of surfaces decorated with textures of suitable size, is associated with a layer of gas trapped within surface roughness. The reduced liquid/solid contact makes superhydrophobicity attractive for many technological applications. This gas layer, however, can break down with the liquid completely wetting the surface. Experiments have shown that the recovery of the “suspended” superhydrophobic state from the wet one is difficult. Self-recovery—the spontaneous restoring of the gas layer at ambient conditions—is one of the dreams of research in superhydrophobicity as it would allow to overcome the fragility of superhydrophobicity. In this work we have performed a theoretical investigation of the wetting and recovery processes on a set of surfaces characterized by textures of different dimensions and morphology in order to elucidate the optimal parameters for avoiding wetting and achieving self-recovery. Results show that texture size in the nanometer range is a necessary but not sufficient condition for self-recovery: the geometry plays a crucial role, nanopillars prevent self-recovery, while surfaces with square pores exhibit self-recovery even at large positive pressures. However, the optimal morphology for self-recovery, the square pore, is suboptimal for the functional properties of the surface, for example, high slippage. Our calculations show that these two properties are related to regions of the texture separated in space: self-recovery is controlled by the characteristics of the bottom surface, while wetting and slip are controlled by the cavity mouth. We thus propose a modular design strategy which combines self-recovery and good functional properties: Square pores surmounted by ridges achieve self-recovery even at 2 MPa and have a very small liquid/solid contact area. The macroscopic calculations, which allowed us to efficiently devise design criteria, have been validated by atomistic simulations, with the o
机译:超疏水性,表面具有合适尺寸纹理的表面的增强疏水性与捕获在表面粗糙度内的一层气体相关。降低的液体/固体接触使超细侵蚀性具有吸引力,对于许多技术应用。然而,这种气体层可以通过完全润湿表面的液体来分解。实验表明,从湿润的恢复“悬浮的”超疏水状态是困难的。自我恢复 - 在环境条件下的气体层自发恢复 - 是超疏水性研究的梦想之一,因为它可以克服超疏水性的​​脆弱性。在这项工作中,我们已经对一组表面上的润湿和恢复过程进行了理论研究,其特征在于不同尺寸和形态的纹理,以阐明避免润湿和实现自我回收的最佳参数。结果表明,纳米范围内的纹理尺寸是自我恢复的必要但不充分条件:几何形状起到至关重要的作用,纳米粒子防止自我恢复,而平方孔隙的表面甚至在大的正压力下表现出自我回收。然而,用于自我回收的最佳形态,方形孔隙是表面的功能性质的次优,例如,高滑动。我们的计算表明,这两个性质与空间中分开的纹理区域有关:通过底表面的特性控制自恢复,同时润湿和滑动由腔口控制。因此,我们提出了一种模块化的设计策略,它结合了自我恢复和良好的功能性质:即使在2MPa处也达到自我回收的方形孔隙,并且具有非常小的液体/固体接触区域。允许我们有效地设计设计标准的宏观计算已被原子模拟验证,并通过O

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号