...
首页> 外文期刊>ACS nano >Nanodroplets at Membranes Create Tight-Lipped Membrane Necks via Negative Line Tension
【24h】

Nanodroplets at Membranes Create Tight-Lipped Membrane Necks via Negative Line Tension

机译:膜的纳米辊通过负线张力产生紧密膜颈部

获取原文
获取原文并翻译 | 示例
           

摘要

The response of biomembranes to aqueous-phase separation and to the resulting water-in-water droplets has been recently studied on the micrometer scale using optical microscopy and elasticity theory. When such a droplet adheres to the membrane, it forms a contact area that is bounded by a contact line. For a micrometer-sized droplet, the line tension associated with this contact line can usually be ignored compared with the surface tensions. However, for a small nanoscopic droplet, this line tension is expected to affect the membrane-droplet morphology. Here, we use molecular simulations to study nanodroplets at membranes and to gain insight into these line tension effects. The latter effects are shown to depend strongly on another key parameter, the mechanical tension experienced by the membrane. For a large membrane tension, a droplet adhering to the membrane is only partially engulfed by the membrane, and the membrane-droplet system exhibits an axisymmetric morphology. A reduction of the membrane tension leads to an increase in the contact area and a decrease in the interfacial area of the droplet, initially retaining its axisymmetric shape, which implies a circular contact line and a circular membrane neck. However, when the tension falls below a certain threshold value, the system undergoes a morphological transition toward a non-axisymmetric morphology with a non-circular membrane neck. This morphology persists until the nanodroplet is completely engulfed by the membrane and the membrane neck has closed into a tight-lipped shape. The latter morphology is caused by a negative line tension, which is shown to be a robust feature of membrane-droplet systems. A closed membrane neck with a tight-lipped shape suppresses both thermally activated and protein-induced scission of the neck, implying a reduction in the cellular uptake of nanodroplets by pinocytosis and fluid-phase endocytosis. Furthermore, based on our results, we can also draw important conclusions about
机译:最近使用光学显微镜和弹性理论对生物膜与水相分离和所得水 - 水滴水液体的响应。当这样的液滴粘附在膜上时,它形成由接触线限定的接触区域。对于微米尺寸的液滴,与该接触线相关的线张力通常可以与表面张力相比忽略。然而,对于小纳米镜液滴,预期该线张力会影响膜 - 液滴形态。在这里,我们使用分子模拟在膜上研究纳米块,并进入这些线张力效应的洞察力。后一种效果显示在另一个关键参数上强烈依赖于膜的机械张力。对于大的膜张力,粘附在膜上的液滴仅被膜部分地吞噬,并且膜 - 液滴系统表现出轴对称形态。膜张力的降低导致接触面积的增加和液滴界面区域的减小,最初保持其轴对称形状,这意味着圆形接触线和圆形膜颈部。然而,当张力低于某个阈值时,系统经历与非圆形膜颈部的非轴对称形态的形态转变。这种形态仍然存在,直到纳米射线完全被膜完全吞噬,膜颈部已关闭成紧密的形状。后一种形态是由负线张力引起的,其被示出为膜 - 液滴系统的稳健特征。具有紧密形状的封闭膜颈部抑制了颈部的热活化和蛋白质诱导的颈部裂变,这意味着通过吞噬作用和流体相胞增生的纳米粒子的细胞摄取的降低。此外,根据我们的结果,我们还可以得出重要的结论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号