首页> 外文期刊>ACS nano >LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode
【24h】

LiF Splitting Catalyzed by Dual Metal Nanodomains for an Efficient Fluoride Conversion Cathode

机译:用双金属纳米型催化的LiF分裂,用于有效的氟化物转化阴极

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The critical challenges for fluoride conversion cathodes lie in the absence of built-in Li source, poor capacity retention, and rate performance. For lithiated fluorides, the reason to limit their competitiveness is rooted in the facile coarsing of insulating LiF (as built-in Li source) and its insufficient splitting kinetics during charging. Previous efforts on blending LiF nanodomains with reductive metal, metal oxide, or fluoride by ball-milling method still face the problems of large over potential and low current density. Herein we propose a strategy of dual-metal (Fe-Cu) driven LiF splitting to activate the conversion reaction of fluoride cathode. This lithiated heterostructure (LiF/Fe/Cu) with compact nano-domain contact enables a substantial charge process with considerable capacity release (300 mAh g(-1)) and low charge overpotential. Its reversible capacity is as high as 375-400 mAh g(-1) with high energy efficiency (76%), substantial pseudocapacitance contribution (>50%), and satisfactory capacity retention (at least 200 cycles). The addition of Cu nanodomains greatly catalyzes the kinetics of Fe-Cu-F formation and decomposition compared with the redox process of Fe-F, which lead to the energy and power densities exceeding 1000 Wh kg(-1) and 1500 W kg(-1), respectively. These results indicate that LiF-driven cathode is promising as long as its intrinsic conductive network is elegantly designed.
机译:氟化物转化阴极的关键挑战在没有内置的锂来源,容量滞留性差和速率性能的情况下。对于锂化的氟化物,限制其竞争力的原因根植于绝缘LiF(作为内置Li源)的容量粗略,并且在充电期间分裂动力学不足。以往努力通过球磨方法将LiF纳米氧化物与还原金属,金属氧化物或氟化物混合仍然面临潜在和低电流密度的大量问题。在此,我们提出了一种双金属(Fe-Cu)驱动的LiF分裂策略以激活氟化物阴极的转化反应。具有紧凑型纳米域触点的这种锂化的异质结构(LiF / Fe / Cu)使得具有相当大容量释放(300mAh(-1))和低电荷过电压的大量电荷过程。其可逆容量高达375-400 MAH G(-1),高能量效率(76%),实质性伪震动贡献(> 50%),令人满意的容量保留(至少200周期)。与Fe-F的氧化还原过程相比,加入Cu纳米型含有Cu-Cu-F形成和分解的动力学,这导致超过1000WH(-1)和1500W kg( - )的能量和功率密度( - 1)分别。这些结果表明,只要其内在导电网络被设计优雅地,Lif驱动的阴极就会有望。

著录项

  • 来源
    《ACS nano》 |2019年第2期|共11页
  • 作者单位

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai Synchrotron Radiat Facil Shanghai 201204 Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine Shanghai 200050 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    LiF splitting fluoride cathode; conversion reaction; Li-ion batteries; thin film;

    机译:LiF分裂氟阴极;转化反应;锂离子电池;薄膜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号