首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites
【24h】

Nitrene functionalization as a new approach for reducing the interfacial thermal resistance in graphene nanoplatelets/epoxy nanocomposites

机译:硝化氢官能化作为降低石墨烯纳米片/环氧纳米复合材料中界面热阻的新方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Conventional functionalization methods, such as oxidation, can be very damaging for the nanocarbons microstructure and therefore detrimental for their intrinsic thermal conductivity. In this study, nitrene chemistry was investigated as a non-disruptive approach for the covalent functionalization of graphene nanoplatelets (GNP). The nitrene precursor was synthesized and thermally decomposed in situ to functionalize GNP (cm-GNP). Temperature and solvents of reaction were found to have profound impact on the functionalization yield. Epoxy nanocomposites were then prepared with pristine, oxidized and cm-GNP. Influence of dispersion methodology was crucial for cm-GNP, as sonication was found to damage the functionalization. Oxidation caused a dramatic drop in thermal conductivity compared to pristine GNP. By contrast, nitrene chemistry produced the highest thermal conductivity enhancement. Finally, epoxy nanocomposites thermal conductivity results were correlated and discussed in light of SEM and micro-computed X-ray tomography (mCT) analyses. The mCT highlighted new features, such as micro-voids surrounding pristine GNP in epoxy nanocomposites, which are invisible with conventional methods. It was found that functionalization not only enhanced the dispersion but also improved GNP/polymer interactions. Moreover, mCT clearly demonstrated that nitrene functionalization eliminated the micro voids surrounding the fillers in the epoxy nanocomposites. (C) 2020 Elsevier Ltd. All rights reserved.
机译:常规官能化方法,例如氧化,对于纳米碳组织来说可能对纳米碳组织非常损害,因此对其固有的导热性有害。在本研究中,研究了硝酸硝化的化学作为石墨烯纳米克罗特勒(GNP)的共价官能化的非破坏性方法。合成硝酸硝基前体,并以原位热分解为官能化GNP(CM-GNP)。发现反应的温度和溶剂对官能化产率产生深远的影响。然后用原始,氧化和CM-GNP制备环氧纳米复合材料。分散方法的影响对于CM-GNP至关重要,因为发现超声损伤官能化。与原始GNP相比,氧化引起了导热系数的显着下降。相比之下,硝酸氮化化学产生了最高的导热率增强。最后,环氧纳米复合材料的热导率结果是相关的,并且根据SEM和微计算X射线断层扫描(MCT)分析来讨论。 MCT突出显示了新的特征,例如环氧纳米复合材料中围绕原始GNP的微空隙,其与常规方法看不可见。发现官能化不仅提高了分散体,而且还改善了GNP /聚合物相互作用。此外,MCT清楚地表明,硝化氢官能化消除了环氧纳米复合材料中填料周围的微空隙。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号