...
首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Understanding the processing-structure-performance relationship of graphene and its variants as anode material for Li-ion batteries: A critical review
【24h】

Understanding the processing-structure-performance relationship of graphene and its variants as anode material for Li-ion batteries: A critical review

机译:理解石墨烯及其变体的加工结构 - 性能关系作为锂离子电池的阳极材料:临界评论

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Graphenic carbon, as the lower (or nano-) dimensional form of graphitic carbon, is expected to allow lithiation/delithiation of an electrode constituted by the same in lesser time and possess greater specific gravimetric Li-storage capacity, as compared to graphitic carbon. The aforementioned positive aspects of graphenic carbon are expected/predicted/observed primarily due to the lower dimensional scale, greater specific surface area (SSA) and presence of 'defect' sites. Nevertheless, the types and extents of defects cast significant influences (both, positive and negative) on the Li-storage behavior/performance. For example, lack of ordering between constituent graphene layers suppresses Li-storage in the inter-layer spaces. Furthermore, despite providing additional sites for Li-storage, the defect sites themselves, in addition to enhanced SSA, cause irreversible Li-loss, voltage hysteresis, altering of the nature of potential profile from being flatter (restricted to lower potentials) to sloping from higher potentials, and also negatively affect the thermal stability/safety aspects. The concerned structural features of graphenic carbon, in turn, depend on the preparation route/condition. Not surprisingly, the associated literature base presents different viewpoints. In these contexts, the present review article looks into the correlations between preparation routes/conditions, structural features of graphenic carbon and electrochemical Li-storage behavior/performance; more from a fundamental perspective. (C) 2019 Elsevier Ltd. All rights reserved.
机译:与石墨碳相比,预期允许在较小的时间内允许相同的电极的锂化/脱位,并且与石墨碳相比具有更高的重量锂储存能力,允许锂电片碳。预期/预测/预测/观察到的上述阳性方面主要是由于尺寸较低,比表面积(SSA)和存在“缺陷”位点的存在。然而,缺陷的类型和范围在LI储存行为/性能上投射了显着影响(两者,正负)。例如,组成石墨烯层之间的缺乏排序抑制了层间空间中的LI储存。此外,尽管提供了Li-Staver的额外站点,但除了增强的SSA之外,缺陷部位本身还引起不可逆的锂损失,电压滞后,改变潜在的轮廓的性质从朝向(限制为较低的电位)到倾斜较高的电位,并且也对热稳定性/安全方面产生负面影响。又依赖于制备途径/条件的近期结构特征。毫不奇怪,相关的文献基础呈现出不同的观点。在这些背景下,本综述文章研究了准备路线/条件之间的相关性,石墨碳的结构特征和电化学锂储存行为/性能;更多来自基本的角度。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号