...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells
【24h】

Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells

机译:基于梯形二烯醇萘基的小分子受体,用于高效的非氟联有机太阳能电池

获取原文
获取原文并翻译 | 示例

摘要

Two novel small molecule acceptors (DTNIC6 and DTNIC8) based on a ladder-type dithienonaphthalene (DTN) building block with linear (hexyl) or branched (2-ethylhexyl) alkyl substituents are designed and synthesized. Both acceptors exhibit strong and broad absorption in the range from 500 to 720 nm as well as appropriate highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. Replacing the linear hexyl chains with the branched 2-ethylhexyl chains has a large impact on the film morphology of photoactive layers. In the blend film based on DTNIC8 bearing the branched alkyl chains, morphology with well-defined phase separation was observed. This optimal phase morphology yields efficient exciton dissociation, reduced bimolecular recombination, and enhanced and balanced charge carrier mobilities. Benefited from these factors, organic solar cells (OSCs) based on PBDB-T:DTNIC8 deliver a highest power conversion efficiency (PCE) of 9.03% with a high fill factor (FF) of 72.84%. This unprecedented high FF of 72.84% is one of the highest FF values reported for nonfullerene OSCs. Our work not only affords a promising electron acceptor for nonfullerene solar cells but also provides a side-chain engineering strategy toward high performance OSCs.
机译:设计并合成基于梯形二烯酮(DTN)构建块(DTN)构建块(DTN)构建块的两种新型小分子受体(DTNIC6和DTNIC8)设计并合成。两个受体在500至720nm的范围内表现出强烈且宽的吸收,以及适当的最高占用的分子轨道(HOMO)和最低的未占用的分子轨道(LumO)水平。用支化的2-乙基己基链替换线性己基链具有很大的影响光活性层的薄膜形态。在基于携带支化烷基链的DTNAM8的混合膜中,观察到具有明确的相分离的形态。这种最佳相位形态产生高效的激子解离,降低的双分子重组和增强和平衡的电荷载流性。受益于这些因素,基于PBDB-T的有机太阳能电池(OSC):DTNIC8提供9.03%的最高功率转换效率(PCE),高填充因子(FF)为72.84%。这个前所未有的高FF为72.84%是非氟伦烯OSC报告的最高FF值之一。我们的工作不仅为非氟氯丁烯太阳能电池提供了一个有希望的电子受体,而且还为高性能OSC提供了侧链工程战略。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Fujian Inst Res Struct Matter State Key Lab Struct Chem 155 Yangqiao West Rd Fuzhou 350002 Fujian Peoples R China;

    Chinese Acad Sci Fujian Inst Res Struct Matter State Key Lab Struct Chem 155 Yangqiao West Rd Fuzhou 350002 Fujian Peoples R China;

    Wuhan Univ Technol Sch Mat Sci &

    Engn Wuhan 430070 Hubei Peoples R China;

    Xi An Jiao Tong Univ State Key Lab Mech Behav Mat Xian 710049 Shaanxi Peoples R China;

    Wuhan Univ Technol Sch Mat Sci &

    Engn Wuhan 430070 Hubei Peoples R China;

    Xi An Jiao Tong Univ State Key Lab Mech Behav Mat Xian 710049 Shaanxi Peoples R China;

    Chinese Acad Sci Fujian Inst Res Struct Matter State Key Lab Struct Chem 155 Yangqiao West Rd Fuzhou 350002 Fujian Peoples R China;

    Chinese Acad Sci Fujian Inst Res Struct Matter State Key Lab Struct Chem 155 Yangqiao West Rd Fuzhou 350002 Fujian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号