...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Unraveling the Mechanism Underlying Surface Ligand Passivation of Colloidal Semiconductor Nanocrystals: A Route for Preparing Advanced Hybrid Nanomaterials
【24h】

Unraveling the Mechanism Underlying Surface Ligand Passivation of Colloidal Semiconductor Nanocrystals: A Route for Preparing Advanced Hybrid Nanomaterials

机译:揭开胶体半导体纳米晶体的潜在表面配体钝化的机制:一种制备先进的杂交纳米材料的途径

获取原文
获取原文并翻译 | 示例
           

摘要

Optically bright colloidal semiconductor nanocrystals (CSNCs) are important nanomaterials because of their potential applications such as cellular imaging and solid-state lighting. The optoelectronic properties of CSNCs are strongly controlled by the chemical nature of the surface passivating ligands that are introduced during their synthesis. However, the existing LaMer growth model does not provide a clear understanding of the stage when ligands become attached onto the CSNC surface. Herein, apart from the three stage formation mechanism of CSNCs (supersaturation, nucleation, and growth), an entirely new stage-solely involving surface ligand attachment onto fully grown CSNCs-is now reported that controls their photoluminescence properties. Furthermore, we also demonstrate a fundamentally new surface modification approach using partially passivated CSNCs to introduce a variety of functional groups (azide, alkene, and siloxane), including photoisomerizable molecular machines (e.g., azobenzene), without the use of "state-of-the art" ligand exchange chemistry. Knowledge of the ligand adsorption phenomena and resulting adsorption time dependence expands our fundamental understanding of structure-property relationships while allowing us to engineer novel hybrid functional nanomaterials with both previously unknown optoelectronic properties and supermolecular assembly options for various applications.
机译:光学亮胶体半导体纳米晶体(CSNC)是重要的纳米材料,因为它们的潜在应用如蜂窝成像和固态照明。 CSNC的光电性能受其合成期间引入的表面钝化配体的化学性质的强烈控制。然而,当配体附着在CSNC表面上时,现有的落叶剂生长模型不提供对阶段的明确了解。除此之外,除了CSNCs的三个阶段形成机制(过饱和,成核,生长),现在报道了一种完全涉及完全生长的CSNC的表面配体附着 - 现在控制它们的光致发光性质。此外,我们还证明了一种基本上使用部分钝化的CSNC的新的表面改性方法,以引入各种官能团(叠氮化物,烯烃和硅氧烷),包括光异构化分子机(例如偶氮烯),而不使用“状态”艺术“配体交换化学。了解配体吸附现象和产生的吸附时间依赖性扩大了我们对结构性质关系的基本理解,同时允许我们用先前未知的光电性能和各种应用的超分子组装选择来工程新的杂化功能纳米材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号