...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Toward Establishing Electronic and Phononic Signatures of Reversible Lattice Oxygen Oxidation in Lithium Transition Metal Oxides For Li-Ion Batteries
【24h】

Toward Establishing Electronic and Phononic Signatures of Reversible Lattice Oxygen Oxidation in Lithium Transition Metal Oxides For Li-Ion Batteries

机译:朝向锂离子电池锂过渡金属氧化物中可逆晶格氧氧化的电子和呼吸声标

获取原文
获取原文并翻译 | 示例

摘要

The prospect of accessing anionic (oxygen) oxidation and reduction reversibly in lithium transition metal oxides for the positive electrode offers exciting opportunities to greatly boost the energy density of Li-ion batteries. Unfortunately, the physical mechanisms governing oxygen redox in these oxides remain under debate. In this article, density functional theory studies using maximally localized Wannier functions revealed that deintercalation of both lithium ions from Li2-xRuO3 as well as Li1-xNiO2 (Li3/2-xNi3/O-2(3)) was dominated by the oxidation of nonbonding states of oxygen or bonding states of oxygen from metal-oxygen bonds, which was accompanied by moderate Ru/Ni oxidation and reduction in the O-O bond distance, facilitated by high metal-oxygen covalency in oxides. In contrast, deintercalation of lithium ions from Li2-xMnO3 as well as Li2-xTiO3 and Li2-xSnO3 was dominated by the oxidation of nonbonding states of oxygen to form O-O p sigma (sigma) and pi states with accompanied distinct O-O peroxo-like bond formation but without Mn oxidation, which is facilitated by relatively low metal-oxygen covalency. Remarkably, the average oxygen phonon density of states (phonon DOS) of oxides with high metal-oxygen covalency like Li2-xRuO3, Li2-xIrO3, and Li1-xNiO2 was moved to higher frequencies while that of those with low covalency like Li2-xMnO3, Li2-xTiO3, and Li2-xSnO3 was moved to lower frequencies, which could promote oxygen and metal migration and structural instability, leading to irreversible oxygen redox. It is postulated that high metal-oxygen covalency is essential to enable reversible access of oxygen redox along with metal redox in transition metal oxides, which bridges different schools of thoughts for oxygen redox and provide new insights into design of new oxygen-redox capable positive electrodes.
机译:在正电极锂过渡金属氧化物中可逆地进入阴离子(氧)氧化和还原的前景提供了激动人心的机会,从而大大提高Li离子电池的能量密度。不幸的是,在这些氧化物中氧气氧化还原的物理机制仍然是在辩论下。在本文中,使用最大局部化的婚姻函数的密度功能理论研究表明,来自Li2-xRuO3的锂离子以及Li1-xNi 2的脱嵌(Li 3/2-xNi3 / O-2(3))通过氧化来支配由金属 - 氧键的非粘结状态或氧气的粘合状态,其伴随着中等的Ru / Ni氧化和oO键距离的氧化率,通过氧化物中的高金属 - 氧共价促进。相反,来自Li2-XMNO3以及Li2-XTiO3和Li2-XSnO3的锂离子的脱嵌由氧气的非合金态氧化以形成OO p Sigma(Sigma)和PI状态,并伴随着不同的OO Peroxo样键形成但没有Mn氧化,通过相对较低的金属 - 氧共价促进。值得注意地,具有高金属 - 氧共和等氧化物的状态(声子DOS)的平均氧声密度,如Li2-xRuO3,Li2-Xiro3和Li1-xNiO 2移动到更高的频率,而具有低共和等的那样Li2-XMNO3 ,Li2-Xtio3和Li2-XsnO3移动到较低频率,这可以促进氧气和金属迁移和结构不稳定,导致不可逆的氧气氧化还原。主题为高金属 - 氧共和等至关重要,以实现氧氧化还原的可逆性通道以及过渡金属氧化物中的金属氧化还原,这弥补了氧氧化还原的不同学校,并为新的氧氧化还原功能的正电极设计提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号