首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes
【24h】

Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes

机译:聚丙烯酸(PAA)粘合剂对硅阳极固体电解质间相互作用的作用

获取原文
获取原文并翻译 | 示例
       

摘要

To obtain high-energy density Li-ion batteries for the next generation storage devices, silicon anodes provide a viable option because of their high theoretical capacity, low operating potential versus lithium (Li), and environmental abundance. However, the silicon electrode suffers from large volume expansion (similar to 300%) that leads to mechanical failure, cracks in the SEI (solid electrolyte interphase), and loss of contact with the current collector, all of which severely impede the capacity retention. In this respect, the choice of binders, carbon, electrolyte, and the morphology of the silicon itself plays a critical role in improving capacity retention. Of specific mention is the role of binders where a carboxylic acid-heavy group, PAA (polyacrylic acid), has been demonstrated to have better cycling capacity retention as compared to CMC (carboxy methyl cellulose). Traditionally, the role of binders has been proposed as a soft matrix backbone that allows volume expansion of the anode while preserving its morphology. However, the effect of the binder on both the rate of formation of SEI species across cycles and its distribution around the silicon nanoparticles has not been completely investigated. Herein, we use two different binders (PAA and CMC) coupled with LiFSI (lithium bis(fluorosulfonyl)imide)/EMI-FSI (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide) ionic liquid as the electrolyte to understand the effect of binder on the SEI. Using STEM-EDX (scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy), EELS (electron energy loss spectroscopy), and XPS (X-ray photoelectron spectroscopy), we discuss the evolution of the SEI on the Si electrode for both binders. Our results indicate that a faster decomposition of FSI- with a PAA binder leads to LiF (lithium fluoride) formation, making F- unavailable for subsequent SEI formation cycles. This allows further decomposition of the LiFSI salt to sulfates and sulfides which form a crucial component of the SEI around silicon nanoparticles after 100 cycles in the PAA binder-based system. The dual effects of faster consumption of to form LiF together with the distribution of passivating sulfides in the SEI could allow for better capacity retention in the PAA binder system as compared to that with CMC.
机译:为了获得用于下一代存储装置的高能密度锂离子电池,硅阳极由于其高理论能力,低运行电位与锂(Li)和环境丰度而提供了可行的选择。然而,硅电极具有大的体积膨胀(类似于300%),其导致机械故障,SEI(固体电解质相互相互相互相互相互相互相互相互相同)的裂缝,以及与集电器的丧失,所有这些都严重阻碍了容量保持。在这方面,粘合剂的选择,碳,电解质和硅本身的形态在提高容量保持方面发挥着关键作用。具体提及是已经证明了与CMC(羧甲基纤维素)相比具有更好的循环能力保持性的粘合剂的作用。传统上,已经提出了粘合剂的作用作为软质基质骨架,其允许阳极的体积膨胀,同时保持其形态。然而,粘合剂对硅纳米颗粒周围的循环循环形成的形成率及其分布的影响尚未得到完全研究。在此,我们使用两种不同的粘合剂(PAA和CMC)与LIFSI(锂双(氟磺酰基)酰亚胺)/ EMI-FSI(1-乙基-3-甲基咪唑鎓双(氟磺酰基)酰亚胺)离子液体作为电解质来理解效果在SEI上的粘合剂。使用茎EDX(扫描透射电子显微镜 - 能量分散X射线光谱),EELS(电子能量损失光谱)和XPS(X射线光电子能谱),我们讨论了两者Si电极上SEI的演变粘合剂。我们的结果表明,使用PAA粘合剂的FSI分解更快地导致LIF(氟化锂)形成,使F-不可用的SEI形成循环。这允许Lifsi盐进一步分解LiLsi盐与硫酸盐和硫化物,其在Paa粘合剂的系统中100次循环之后在硅纳米颗粒周围形成SEI的关键组分。与用CMC相比,SEI中钝化硫化物的钝化硫化物的分布更快地消耗钝化生物的双重效应可以允许在PAA粘合剂体系中更好地保​​持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号