...
首页> 外文期刊>Chemistry: A European journal >Facile Assembly of 3D Porous Reduced Graphene Oxide/Ultrathin MnO2 Nanosheets-S Aerogels as Efficient Polysulfide Adsorption Sites for High-Performance Lithium–Sulfur Batteries
【24h】

Facile Assembly of 3D Porous Reduced Graphene Oxide/Ultrathin MnO2 Nanosheets-S Aerogels as Efficient Polysulfide Adsorption Sites for High-Performance Lithium–Sulfur Batteries

机译:3D多孔氧化石墨烯氧化物/超薄MnO2纳米蛋白石器的容易组装作为高性能锂 - 硫磺电池的有效多硫化物吸附位点

获取原文
获取原文并翻译 | 示例
           

摘要

Rechargeable lithium–sulfur (Li–S) batteries are receiving much attention due to their high specific capacity, low cost, and environmental friendliness. Nonetheless, fast capacity decay and low specific capacity still limit their practical implementation. Herein, we report a facile strategy to overcome these challenges by the design and fabrication of 3D porous reduced graphene oxide/ultrathin MnO2 nanosheets- S aerogel (rGM-SA) composites for Li–S batteries. By a simple solvothermal reaction process, nanosized S atoms are homogeneously decorated into the 3D scaffold formed by reduced graphene oxide (rGO) and MnO2 nanosheets, which can form the homogeneous rGM-SA composites. In this porous network architecture, rGO serves as an electron and ion transfer pathway, a physical adsorption site for polysulfides, and provides structural stability. The ultrathin MnO2 nanosheets provide strong binding sites for trapping polysulfide intermediates. The 3D porous rGO/MnO2 architecture enables rapid ion transport and buffers volume expansion of sulfur during discharge. The rGM-SA composites can be directly used as lithium–sulfur battery cathodes without using binder and conductive additive. As a result of this multifunctional arrangement, the rGM-SA composites exhibit high and stable-specific capacities over 200 cycles and excellent highrate performances.
机译:可充电锂 - 硫磺(LI-S)电池由于其高特定容量,低成本和环境友好而受到大量关注。尽管如此,快速容量衰减和低特定容量仍然限制了其实际实施。在此,我们报告了一个容易的策略来克服这些挑战,通过用于LI-S电池的3D多孔氧化物氧化物/超薄MNO2纳米晶片气凝胶(RGM-SA)复合材料的设计和制作来克服这些挑战。通过简单的溶剂热反应过程,纳米化的S原子均匀地装饰成通过还原的石墨烯(RGO)和MnO2纳米片形成的3D支架,其可以形成均匀的RGM-SA复合材料。在该多孔网络架构中,Rgo用作电子和离子转移途径,用于多硫化物的物理吸附部位,提供结构稳定性。超薄MnO2纳米蛋白酶提供用于捕获多硫化物中间体的强粘合位点。 3D多孔RGO / MNO2架构可实现快速离子运输和缓冲在放电期间硫的膨胀。 RGM-SA复合材料可以直接用作锂 - 硫电池阴极而不使用粘合剂和导电添加剂。由于这种多功能布置,RGM-SA复合材料具有超过200个循环的高且稳定的特定能力和优异的高分性性能。

著录项

  • 来源
    《Chemistry: A European journal》 |2017年第29期|共9页
  • 作者单位

    Key Laboratory of Synthetic and Nature Functional Molecule Chemistry (Ministry of Education) College of Chemistry and Materials Science Northwest University Xi’an 710127 (P.R. China);

    Key Laboratory of Synthetic and Nature Functional Molecule Chemistry (Ministry of Education) College of Chemistry and Materials Science Northwest University Xi’an 710127 (P.R. China);

    Key Laboratory of Synthetic and Nature Functional Molecule Chemistry (Ministry of Education) College of Chemistry and Materials Science Northwest University Xi’an 710127 (P.R. China);

    National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) National Photoelectric Technology and Functional Materials and Application International Cooperation Base Institute of Photonics and Photon-Technology Northwest U;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用化学;
  • 关键词

    aerogels; electrochemistry; lithium–sulfur batteries; nanosheets; reduced graphene oxide;

    机译:气凝胶;电化学;锂硫电池;纳米蛋白酶;氧化石墨氧化物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号