...
首页> 外文期刊>Chemical Engineering Science >A CFD-DEM solver to model bubbly flow. Part II: Critical validation in upward vertical pipes including axial evolution
【24h】

A CFD-DEM solver to model bubbly flow. Part II: Critical validation in upward vertical pipes including axial evolution

机译:CFD-DEM求解器以模拟起泡流。 第二部分:向上垂直管道的关键验证,包括轴向演变

获取原文
获取原文并翻译 | 示例
           

摘要

In the computational modeling of two-phase flow, many uncertainties are usually faced in simulations and validations with experiments. This has traditionally made it difficult to provide a general method to predict the two-phase flow characteristics for any geometry and condition, even for bubbly flow regimes. Thus, we focus our research on studying in depth the bubbly flow modeling and validation from a critical point of view. The conditions are intentionally limited to scenarios where coalescence and breakup can be neglected, to concentrate on the study of bubble dynamics and its interaction with the main fluid. This study required the development of a solver for bubbly flow with higher resolution level than TFM and a new methodology to obtain the data from the simulation. In Part II, taking profit of the detailed data provided by the CFD-DEM solver presented in Part I, we propose a novel methodology based on virtual sensor probes, to perform a rigorous validation and to investigate the experimental data. The same approximation used for processing the experimental datasets applies to simulation data, then the same assumptions are considered. In this way we can study an extended number of disperse phase variables as bubble velocity, void fraction, interfacial area concentration, mean chord length and distribution, Sauter mean diameter, bubble frequency and missing ratio, in addition to other variables as bubble size distribution or carrier phase velocity and turbulence. Several upward bubbly flow scenarios from datasets of different authors are used to validate the solver using this methodology. Finally, an axial evolution validation is performed including a discussion motivated by the comparison between experiments and the data from the virtual probes. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在两相流量的计算建模中,许多不确定性通常面临模拟和实验验证。传统上,这使得难以提供一种预测任何几何形状和条件的两相流动特性的一般方法,即使是用于气泡流动状态。因此,我们专注于从临界角度深入地学习的研究。条件是有意限于可以忽略聚结和分类的情况,以集中于泡沫动力学的研究及其与主要流体的相互作用。本研究需要开发用于使用更高的分辨率水平的求解器的求解器,而不是从模拟中获取数据的新方法。在第II部分中,借助CFD-DEM解决者提供的详细数据,我们提出了一种基于虚拟传感器探针的新型方法,以执行严格的验证并调查实验数据。用于处理实验数据集的相同近似适用于仿真数据,然后考虑相同的假设。通过这种方式,我们可以研究扩展的分散相变量作为气泡速度,空隙分数,界面区域浓度,平均弦长和分布,燃烧器平均直径,泡沫频率和缺失比,除了其他变量作为泡沫尺寸分布还是载流子速度和湍流。不同作者数据集的几种向上泡沫流程用于使用该方法验证求解器。最后,执行轴向演化验证,包括通过在虚拟探针之间的实验和数据之间的比较来激励的讨论。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号