...
首页> 外文期刊>Chemical Engineering Science >Novel scale-up strategy based on three-dimensional shear space for animal cell culture
【24h】

Novel scale-up strategy based on three-dimensional shear space for animal cell culture

机译:基于动物细胞培养三维剪切空间的新型扩大策略

获取原文
获取原文并翻译 | 示例

摘要

Animal cell cultivations are widely used for producing antibodies, vaccines, and recombinant protein drugs. However, the extreme sensitivity of animal cells to hydrodynamic stress often hinders its scale-up in large-scale stirred tank bioreactors. This study introduced a new scale-up strategy based on three-dimensional (3D) shear space for large-scale animal cell culture. First, the shear environments of bioreactors ranging from lab-scale (7.5 and 42 L) to industrial-scale (30, 90, 350, and 1000 L) were quantitatively analyzed through computational fluid dynamics (CFD) methods and successfully validated by particle image velocimetry (PIV) experiments. Moreover, the quantitative relationships between shear parameters (including shear rates in the impeller and tank zone, overall average shear rate, and maximum shear rate) and impeller tip velocity were established. In addition, a correlation analysis between shear-related parameters and viable cell densities in Spodoptera frugiperda Sf9 cultivations indicated that shear rates in the impeller and tank zone, and the overall average shear rate were the three key shear parameters required for scale-up. Further, an optimized 3D operation space for shear rate was established according to the three key shear parameters obtained under preferable operation conditions in lab-scale bioreactors. Based on the results, agitation rates in large-scale bioreactors were determined using the proposed correlation. Ultimately, we achieved successful scale-up of Spodoptera frugiperda Sf9 in industrial bioreactors with volumes up to 1000 L using this strategy. Thus, this study introduces a highly efficient and economical scale-up strategy for shear-sensitive cells. (C) 2019 Elsevier Ltd. All rights reserved.
机译:动物细胞培养广泛用于生产抗体,疫苗和重组蛋白药物。然而,动物细胞对流体动力学应激的极端敏感性通常会阻碍其在大规模搅拌的罐生物反应器中的扩展。本研究介绍了基于三维(3D)剪切空间的新扩大策略,用于大规模动物细胞培养。首先,通过计算流体动力学(CFD)方法,定量分析从实验室标度(7.5和42L)到工业范围(30,90,350和1000L)的生物反应器的剪切环境,并通过粒子图像成功验证VELOCIMETRY(PIV)实验。此外,建立了剪切参数(包括叶轮和罐区中的剪切速率,总体平均剪切速率和最大剪切速率)和叶轮尖端速度之间的定量关系。此外,Spodoptera Frugiperda SF9培养中的剪切相关参数和活细胞密度之间的相关性分析表明叶轮和罐区的剪切速率,以及总体平均剪切速率是扩展所需的三个钥匙剪切参数。此外,根据在Lab级生物反应器中优选的操作条件下获得的三个密钥剪切参数建立用于剪切速率的优化的3D操作空间。基于结果,使用所提出的相关性确定大规模生物反应器中的搅拌速率。最终,我们在工业生物反应器中取得了成功扩大的工业生物反应器,其策略高达1000升。因此,本研究介绍了用于剪切敏感细胞的高效和经济的扩大策略。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号