...
首页> 外文期刊>Chemical Engineering Science >The effects of cell density and intrinsic porosity on structural properties and adsorption kinetics in 3D-printed zeolite monoliths
【24h】

The effects of cell density and intrinsic porosity on structural properties and adsorption kinetics in 3D-printed zeolite monoliths

机译:细胞密度和固有孔隙率对3D印刷沸石整料的结构性能和吸附动力学的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Herein, we report the evaluation of dynamic performance of 3D-printed zeolite monoliths for CO2/N-2 separation at 5 bar 25 degrees C. Monoliths with various cell densities (200, 400, 600 cpsi) and porosities (0.23-0.46) were printed and the effects of cell density, wall porosity, and inlet gas velocity on their separation performance were investigated. Dynamic breakthrough tests with 10% CO2/N-2 revealed that increasing cell density gives rise to gas throttling, inadequate time for molecular mass transfer, and broad wavefronts. For 200 cpsi monoliths, upon increasing wall porosity from 0.23 to 0.46, the mass transfer zone (MTZ) length decreased from 0.40 cm to 0.07 cm at the feed velocity of 1.8 cm/s. The mass transfer coefficients estimated from modeling the breakthrough profiles were found to decrease steadily with both velocity and monolith cell density. In the macroporous samples, the best mass transfer coefficient was found to be 0.049 s(-1) for the 200 cpsi monolith with kaolin binder substitution. Both increasing the plasticizer concentration and substituting a macroporous binder promoted mass transfer rate, however, the former method increased the number of zeolite-bentonite bonds around large surface defects during burnout and reduced the CO2 adsorption capacity by 27% from the other formulations. On the basis of adsorption capacity and kinetics, utilization of a macroporous binder was found to be the best method of developing 3D-printed zeolite monoliths because it could reduce intraparticle resistance without compromising adsorption capacity or mechanical integrity. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在此,我们报告了在5巴25℃下进行CO 2 / N-2分离的3D印刷沸石整料的动态性能的评价,具有各种细胞密度(200,400,600cpsi)和孔隙率(0.23-0.46)研究了印刷和细胞密度,壁孔隙度和入口气体速度对其分离性能的影响。具有10%CO 2 / N-2的动态突破性测试表明,增加的细胞密度产生气体节流,分子量传递的时间不足,以及宽波前。对于200cpsi孔隙率,在将壁孔隙率增加到0.23至0.46时,质量转移区(MTZ)长度在1.8cm / s的进料速度下减少0.40cm至0.07cm。发现从建模突破曲线估计的传质系数以速度和整体细胞密度稳定地降低。在大孔样品中,发现最佳的传质系数为200cpsi整料的0.049 s(-1),具有高岭土粘合剂取代。然而,增加增塑剂浓度并取代大孔粘合剂促进的传质速率,然而,前一种方法增加了燃烧期间大表面缺陷周围的沸石 - 膨润土键的数量,并将CO 2吸附容量从其他配方中降低27%。在吸附能力和动力学的基础上,发现大孔粘合剂的利用是开发3D印刷沸石整料的最佳方法,因为它可以降低粒前的阻力而不损害吸附能力或机械完整性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号