...
首页> 外文期刊>Chemical Engineering Science >Determining random packing density and equivalent packing size of superballs via binary mixtures with spheres
【24h】

Determining random packing density and equivalent packing size of superballs via binary mixtures with spheres

机译:用球形通过二元混合物确定超球的随机包装密度和等效包装尺寸

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We propose a new approach to determining the random packing densities of superballs via binary mixtures with spheres. The main idea of the approach is to suppress order formations in non-spherical particle packings via the polydispersity of particle shapes, which avoids using order metrics. The packing density of superballs in a mixture can be segregated using a linear fitting method with the concept of equivalent packing size (or size ratio with unit spheres) which represents the effective size (or volume) of a non-spherical particle in a binary mixture with spheres. We systemically study the packing properties of binary mixtures consisting of spheres and superballs and obtain the equivalent packing sizes of superballs. Our results show that the equivalent packing size ratio always corresponds to the minimal packing density or specific volume (reciprocal of packing densities) variation, and is independent of the solid volume fraction. The specific volumes of mixtures with the equivalent packing size ratio are always the upper bound for all the solid volume fractions. The linear relationship between the specific volume and solid volume fraction is only observed in the mixtures with superballs of small surface shape parameters (shapes close to a sphere), which results from the highly disordered nature in the mixtures. Moreover, the ideal random packing densities of mono-sized superballs obtained via the linear fitting method are surprisingly close to those of the MDRPs (maximally dense random packings), further verifying that the MDRPs of non-spherical particles correspond to the ideal random packings whose degrees of order are at the same level with that of the random close packing of spheres. Our work leads to a better understanding towards the random and binary packings and sheds new light on the essence of the MDRP. Our work also guides the optimal particle size distributions of powders in chemical engineering process. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新方法来通过用球体通过二元混合物确定超球的随机包装密度。该方法的主要思想是通过颗粒形状的多分散性抑制非球形颗粒填料中的顺序形成,这避免了使用订单度量。混合物中的超级弹丸的填充密度可以使用线性装配方法进行分离,其中等效填充尺寸(或与单元球)的概念表示,其表示二元混合物中的非球形颗粒的有效尺寸(或体积)用球体。我们系统地研究了由球体和超球组成的二元混合物的包装特性,获得了超级球的等效包装尺寸。我们的研究结果表明,等效填料尺寸比始终对应于最小的填充密度或特定体积(填充密度的倒数)变化,并且与固体体积分数无关。具有等效填充尺寸比的比混合物的特异性体积始终是所有固体体积级分的上染色。特定体积和固体体积分数之间的线性关系仅在具有超级表面形状参数(靠近球体的形状)的混合物中观察到,这是由混合物中的高度无序性质产生的。此外,通过线性拟合方法获得的单尺寸超大球的理想随机包装密度令人惊讶地接近MDRPS(最大致密的随机填料),进一步验证非球形颗粒的MDRP对应于理想的随机包装秩序度与球体随机关闭包装的级别相同。我们的工作导致对随机和二元包装的更好理解,并在MDRP的本质上脱颖而出。我们的作品还引导了化学工程过程中粉末的最佳粒度分布。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号