...
首页> 外文期刊>Chemical Engineering Science >Modeling of molybdenum transport and pressure drop increase in fixed bed reactors used for selective oxidation of methanol to formaldehyde using iron molybdate catalysts
【24h】

Modeling of molybdenum transport and pressure drop increase in fixed bed reactors used for selective oxidation of methanol to formaldehyde using iron molybdate catalysts

机译:用铁钼酸铁催化剂用于选择性氧化甲醇与甲醛的固定床反应器中钼运输和压降增加

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A dynamic model was developed for a single reactor tube, in which methanol oxidation to formaldehyde over an iron molybdate/molybdenum oxide catalyst takes place simultaneously with transport of MoO3 from the catalyst through the reactor. A previously developed dynamic 1D mathematical model for a single ring-shaped cylindrical catalyst pellet, in which volatilization of MoO3 takes place, was implemented in the reactor model. Known axial profiles in a pilot scale reactor with respect to MeOH and H2O concentration and temperature were used as input to the model. MeOH forms volatile Mo-species with solid MoO3 in the catalyst pellets, which diffuses to the bulk gas phase and is transported through the reactor, leading to MoO3 depleted pellets. Volatilization of MoO3 from the pellets occur at the inlet of the reactor. As MeOH is oxidized down the reactor, the volatile Mo-species decomposes via the reverse reaction that formed them. Deposition of MoO3 downstream in the reactor decreases the void space between the catalyst pellets leading to increased pressure drop. The hydraulic diameter of the catalyst pellets and the porosity of the deposited MoO3 were fitted to experimental data obtained in a pilot plant unit containing a single reactor tube. Furthermore, the model was used to simulate a tube under industrial conditions for up to two years (feed composition 8.4% MeOH, 4% H2O, 10% O-2 in N-2, bed length = 100 cm and a temperature of 190-346 degrees C). Finally, two cases where catalyst pellets with no excess MoO3 or shaped as filled cylinders are used in the initial 21 cm of the catalyst bed were simulated. The simulations show that this significantly decreases the rate at which the pressure drop increases. This model is a first step towards a useful tool to predict MoO3 transport, pressure drop increase and estimation of process life time at varying reaction conditions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:为单个反应器管开发了动态模型,其中在铁钼酸盐/钼氧化物催化剂上氧化甲醇氧化在通过反应器将MOO 3的运输同时进行。以前开发的单环形圆柱催化剂颗粒的动态1D数学模型,其中发生MOO3的挥发,在反应器模型中实施。在模型和H 2 O浓度和温度相对于MeOH和H 2 O浓度和温度的先导级反应器中已知的轴向曲线被用作模型的输入。 MeOH在催化剂颗粒中形成具有固体Moo3的挥发性MO物种,其扩散到散装气相并通过反应器输送,导致MOO3耗尽的颗粒。来自颗粒的MOO3的挥发发生在反应器的入口处。随着MeOH被氧化在反应器中,挥发性MO物种通过形成它们的反应反应分解。反应器中下游的MOO3沉积降低了催化剂颗粒之间的空隙空间,导致增加压降。催化剂颗粒的液压直径和沉积的MOO3的孔隙率拟合到含有单反应器管的试验装置单元中获得的实验数据。此外,该模型用于在工业条件下模拟长达两年的管(饲料组合物8.4%MeOH,4%H 2 O,10%O-2在N-2,床长= 100厘米,温度为190- 346℃)。最后,在催化剂床的初始21cm中使用具有没有多余MOO3或成形的催化剂粒料的两种情况下,在催化剂床的初始21cm中使用。模拟表明,这显着降低了压降增加的速率。该模型是迈向有用工具的第一步,以预测MOO3传输,压降增加和改变反应条件下工艺寿命的估计。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号