首页> 外文期刊>Chemical Engineering Science >Direct numerical simulation of fluid flow and dependently coupled heat and mass transfer in fluid-particle systems
【24h】

Direct numerical simulation of fluid flow and dependently coupled heat and mass transfer in fluid-particle systems

机译:流体流动和依赖性耦合热量和传质在流体粒子系统中的直接数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, an efficient ghost-cell based immersed boundary method (IBM) is used to perform direct numerical simulation (DNS) of reactive fluid-particle systems. With an exothermic first order reaction proceeding at the exterior particle surface, the solid temperature rises and consequently increases the reaction rate via an Arrhenius temperature dependence. In other words, the heat and mass transport is dependently coupled through the particle thermal energy equation and the Arrhenius equation, and they offer dynamic boundary conditions for the fluid phase thermal energy equation and species equation respectively. The fluid-solid coupling is enforced at the exact position of the particle surface by implicit incorporation of the boundary conditions into the discretized momentum, species and thermal energy conservation equations of the fluid phase. Different fluid-particle systems are studied with increasing complexity: a single sphere, three spheres and a dense array consisting of hundreds of randomly generated particles. In these systems the mutual impacts between heat and mass transport processes are investigated. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在本文中,基于有效的幽灵单元的浸没边界法(IBM)用于执行反应性流体粒子系统的直接数值模拟(DNS)。通过在外部颗粒表面处进行放热的第一阶反应,固体温度升高,因此通过Arrhenius温度依赖性增加反应速率。换句话说,热量和质量传输通过粒子热能方程和Arrhenius方程依赖性地耦合,并且它们分别为流体相热能方程和物种方程提供动态边界条件。通过将边界条件隐隐化到流体相的离散的动量,物种和热能节约方程,在颗粒表面的确切位置处强制在颗粒表面的确切位置处强制强制实施流体固耦合。研究了不同的流体粒子系统,随着复杂性的增加:单个球体,三个球体和由数百种随机产生的颗粒组成的致密阵列。在这些系统中,研究了热量和传质过程之间的相互影响。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号