...
首页> 外文期刊>Chemical Engineering Science >Two-phase gas-liquid flow in concentric and fully eccentric annuli. Part I: Flow patterns, holdup, slip ratio and pressure gradient
【24h】

Two-phase gas-liquid flow in concentric and fully eccentric annuli. Part I: Flow patterns, holdup, slip ratio and pressure gradient

机译:同心和完全偏心的云中的两相气体流动。 第一部分:流动模式,保持,滑移比和压力梯度

获取原文
获取原文并翻译 | 示例
           

摘要

Horizontal and upward low-inclination gas-water and gas-oil flows are investigated using an annulus pipe configuration in a high-pressure system (similar to 400 kPa). The annulus test section, or the so-called pipe-in-pipe configuration, consists of an outer pipe of 99 mm inside diameter and an inner pipe of 50 mm outside diameter. Two different vertical positions of the inner pipe with respect to outer pipe have been tested; namely concentric configuration where both pipes have the same centreline and fully eccentric where the inner pipe is placed at the bottom wall of outer pipe. The flow is studied using high-speed photography, differential pressure transducers, and broad-beam gamma densitometers to characterise the flow as function of the liquid phase properties, annulus eccentricity, and pipe inclination. Flow regime maps reveal that slug flow appears to be the most common flow feature across the conditions studied in this paper. Flow in the eccentric annulus shows a more consistent behaviour (i.e. well-defined flow structures axially and in time) than that observed in the concentric annulus. Gas-oil flows show more stable phase fraction behaviour across the cross-section compared to that observed in gas-water flows in which the interface shows significant activity promoting the formation of droplets and ligaments that break from the liquid film. This is especially the case with the concentric annulus configuration. The oil phase regardless of the geometrical configuration tends to fully wet the pipe (made of PVC) as the gas velocity increases, creating a continuous film along the pipe walls. Conversely, the thin film in gas-water flow is not continuous. Discontinuity in the thin film increases with an increase in effective pipe roughness. Given the same inlet flow conditions, the concentric annulus configuration causes larger pressure drop along the pipe than that obtained in the eccentric. (C) 2019 Elsevier Ltd. All rights reserved.
机译:使用高压系统(类似于400kPa)的环管配置来研究水平和向上的低倾瓦气水和气体油流量。环形试验部分或所谓的管道配置,包括99毫米内径的外管和外径50mm的内管。已经测试了内管的两个不同的垂直位置已经过测试;即同心配置,其中两个管具有相同的中心线并且完全偏心,其中内管放置在外管的底壁上。使用高速摄影,差压传感器和宽梁伽马致密量测定的流程来研究流量,以表征流量,作为液相特性,环形偏心和管道倾斜的功能。流程制度图显示,SLUS流量似乎是本文研究条件的最常见的流动特征。偏心环中的流动显示比在同心环中观察到的更一致的行为(即轴向和时间稳定的流动结构。与在横截面中观察到的横截面相比,气体油流动在横截面上显示出更稳定的相位馏分行为,其中界面显示出显着的活性促进从液体膜破裂的液滴和韧带的形成。尤其是同心环形配置的情况。随着气体速度的增加,不管几何构造的油相倾向于完全润湿管道(PVC制成),沿管壁产生连续薄膜。相反,气流中的薄膜不连续。薄膜中的不连续性随着有效管道粗糙度的增加而增加。鉴于相同的入口流动条件,同心环形配置导致管道沿着管道的更大压降而不是在偏心中获得的压力下降。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号