...
首页> 外文期刊>Chemical engineering journal >Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes
【24h】

Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes

机译:通过连续离子层吸附和氧化还原优化超级电容器电极的反应方法改变石墨烯氧化物的表面改性

获取原文
获取原文并翻译 | 示例

摘要

Non-covalent surface modification technique, where the pre-reduction of graphene oxide (GO) was carried out to recover the pi-pi conjugation, was performed through a successive ionic layer adsorption and reaction (SILAR) method for preparing redox dominant supercapacitor electrodes. The p-p conjugation of reduced graphene oxide (RGO) facilitated non-covalent interaction with sulfanilic acid azo-chromotrop (SA) to develop electrolyte accessible layer-by-layer (LL) assembly of RGO and SA (LSARGO). In comparison, RGO was modified with SA through continuous stirring of SA and GO, followed by the post reduction technique and designated as NSARGO. The LSARGO revealed higher surface area, electrical conductivity and electrochemical performances than the NSARGO. Sharp redox peaks with well cathodic peak current density vs. square root of the scan rate slope value indicated a redox dominant LSARGO electrode, which was further confirmed by the specific capacitance (SC) values, calculated from the cyclic voltammetry and galvanostatic charge-discharge (GCD) curves in three electrode configuration. The electrochemical impedance spectroscopy study also revealed that the LSARGO provided more redox dominant supercapacitor characteristics as compared to NSARGO. The LSARGO exhibited a SC of similar to 1023 F g(-1) at scan rate of similar to 10 m V s(-1). The fabricated asymmetric supercapacitor device (ASC) showed an elevated energy and power density of similar to 80 W h kg(-1) and 17,500 W kg(-1), respectively. The ASC experienced high GCD cyclic stability of similar to 84% after 10,000 cycles.
机译:通过连续的离子层吸附和反应(Sill)制备氧化还原优化超级电容器电极来进行非共价表面改性技术以回收氧化石墨烯(GO)的预氧化石墨烯(GO)以回收PI-PI-PI缀合。石墨烯氧化物(RGO)的P-P缀合促进了与磺酸偶氮类 - Chormotrop(SA)的非共价相互作用,以开发RGO和SA的逐层(LL)组装(Lsargo)。相比之下,通过连续搅拌SA并将RGO改性RGO,然后进行缩减后技术并指定为NSARGO。 LSSargo透露比NSARGO更高的表面积,电导率和电化学性能。具有良好的阴极峰值电流密度与扫描速率斜率值的平方根的尖锐氧化还原峰值指示了氧化还原优势Lsargo电极,其通过循环伏安法和电压电荷 - 放电计算的特定电容(SC)值进一步证实( GCD)三个电极配置曲线。电化学阻抗光谱研究还透露,与NSARGO相比,LSARGO提供了更多的氧化还原优势超级电容器特征。 LSARGO在类似于10M V S(-1)的扫描速率下,LSSargo展示了类似于1023f g(-1)的sc。制造的不对称超电容器装置(ASC)显示了相似的能量和功率密度,其分别类似于80WH kg(-1)和17,500W kg(-1)。在10,000个循环后,ASC经历了高GCD循环稳定性的高速循环稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号