...
首页> 外文期刊>Chemical engineering journal >In-situ DRIFTS for the mechanistic studies of NO oxidation over alpha-MnO2, beta-MnO2 and gamma-MnO2 catalysts
【24h】

In-situ DRIFTS for the mechanistic studies of NO oxidation over alpha-MnO2, beta-MnO2 and gamma-MnO2 catalysts

机译:原位漂移用于在α-mnO2,β-mnO2和γ-mnO2催化剂上无氧化的机械研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this article, alpha-MnO2 and beta-MnO2 nanorods, and urchin-like gamma-MnO2 catalysts with different tunnel structures were synthesized by a hydrothermal synthesis method and evaluated for the catalytic oxidation of nitric oxide (NO). The experimental results showed the gamma-MnO2 catalyst has the best catalytic activity among the three catalysts, with more than 80% NO conversion at 250 degrees C. The catalytic oxidation activities decreased in the order: gamma->beta-approximate to alpha-MnO2. The XPS results implied that main manganese in all the catalysts was Me and the activity was in close correlation with the surface concentration of alpha(2) - species. The BET results showed that the surface area was not the suppression factor for NO oxidation. O2TPO/TPD and In-situ DRIFTS experiments showed the catalytic activity of alpha-MnO2 with [2 x 2] tunnels was benefit from the chemisorbed oxygen species while not the lattice oxygens or Mn cations. For beta-MnO2 with [1 x 1] tunnels and gamma-MnO2 with [2 x 1] tunnels, both chemisorbed oxygen and lattice oxygen or Mn cations were the influencing factors on the catalytic oxidation activity, and the chemisorbed oxygens were the major. The main intermediate active species were monodentate nitrites at low temperature, while were bridged nitrates mainly profited from chemisorbed oxygen over three catalysts at high temperature, and further decomposed to NO2 and produced new Mn-O-Mn. The stacking faults of gamma-MnO2 with the random intergrowth of ramsdellite and pyrolusite structures resulted in the main sources of active oxygen species, which were beneficial to the catalytic activity. The reaction pathways over of alpha-,beta-, and gamma-MnO2 catalysts for NO oxidation were proposed. (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,通过水热合成方法合成α-MnO2和β-MnO2纳米棒,以及具有不同隧道结构的尿苷样γ-MnO 2催化剂,并评价一氧化氮(NO)的催化氧化。实验结果表明,γ-mnO2催化剂在三种催化剂中具有最佳的催化活性,在250℃下具有80%以上的转化率。催化氧化活性的顺序下降:γ->β接近α-mnO2 。 XPS结果暗示了所有催化剂中的主要锰是ME,并且活性与α(2)种的表面浓度紧密相关。 BET结果表明,表面积不是无氧化的抑制因子。 O2TPO / TPD和原位漂移实验显示α-MnO2的催化活性与[2×2]隧道受益于化学吸附的氧物质,而不是晶格氧基或Mn阳离子。对于具有[1×1]的β-mnO 2隧道和γ-mnO2与[2×1]隧道,化学吸附的氧气和晶格氧或Mn阳离子均为催化氧化活性的影响因素,并且化学吸附的氧代是主要的。主要中间活性物质在低温下单张化亚硝酸盐,同时桥接硝酸盐主要在高温下在三个催化剂中从化学吸附的氧气中收入,并进一步分解为NO 2并产生新的MN-O-Mn。 γ-mnO2的堆叠故障与ramsdellite和吡咯岩结构的随机凝聚,导致主活性氧物质的主要来源,这对催化活性有益。提出了α,β-和γ-MnO2催化剂的反应途径,无氧化。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号