首页> 外文期刊>Chemical engineering journal >Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity
【24h】

Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity

机译:通过协同诱导氧气空位缺陷和2D / 2D表面设计的BI2WO6 / BIOI级联的协同诱导氧气空位缺陷和P-N异质结的有效转向:朝向优异的光催化二氧化碳还原活性

获取原文
获取原文并翻译 | 示例
       

摘要

Semiconductor-based photocatalytic CO2 conversion is a promising and sustainable avenue in response to the anthropogenic climate change and imminent energy crisis, which however is unavoidably impeded by the limited photoabsorption, undesirable recombination of photogenerated charge carriers and insufficient surface active sites on semiconductors. In this study, all these challenges were overcome by selectively and chemically assembly of oxygen-deficient Bi2WO6 nanosheets onto BiOI nanosheets, forming a novel surface defect-engineered 2D/2D motif with builtin nanoscale p-n heterojunctions. This rational cascade configuration with internal electric field renders ultrafast directional migration and spatial separation of photogenerated charge carriers. Meanwhile, the oxygen vacant sites with abundant trapped electrons serve as the active sites for CO2 reduction and extend the light absorption of the photocatalytic system to NIR region. Combining these propitious properties, our delineated nanoscale p-n heterojunction on the basis of 2D/2D assembly of surface defect-engineered nanosheets presents a new and unprecedented concept for effective generation of charge carriers, directional steering of charge flow and manipulation of surface active sites, which cooperatively lead to superior photocatalytic performance. Notably, our developed oxygen-deficient Bi2WO6/BiOI binanosheets exhibit a remarkably high production yield of CH4, which represents the state-of-the-art visible light-driven CH4 production activity among all the existing 2D BiOI-based and Bi2WO6-based composites.
机译:基于半导体的光催化二氧化碳转换是响应于人为气候变化和即将发生的能量危机的承诺和可持续的大道,然而,由于有限的光发射,光发性电荷载流子和半导体上的表面活性位点不足的重组不可避免地阻碍。在这项研究中,通过选择性和化学组装缺氧Bi2wo6纳米片在Bioi Nanoshss上,克服了所有这些挑战,形成了一种具有内置纳米级P-N异质结的新型表面缺陷工程的2D / 2D基序。具有内部电场的这种合理的级联配置使超快定向迁移和光发化电荷载体的空间分离。同时,具有丰富捕获的电子的氧气空位位点用作CO 2的活性位点,并延伸光催化系统的光吸收到NIR区域。结合这些缺乏的性质,我们的划定纳米级PN异质结基于2D / 2D的表面缺陷工程纳米电池组件,为有效生成电荷载体,电荷流动方向转向和表面活性位点的操纵,这是一种新的和前所未有的概念。合作导致优异的光催化性能。值得注意的是,我们发育的缺氧Bi2WO6 / Bioi Binanoshss表现出显着高的CH 4的产量,这代表了所有现有的2D基于Bio的基于BIO6基复合材料中的最先进的可见光驱动的CH4生产活性。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号