...
首页> 外文期刊>Chemical engineering journal >BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting
【24h】

BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting

机译:BIVO4纳米晶体具有通过Zn掺杂诱导的可控氧空位,与石墨烯量子点相结合,用于增强光电化学水分裂

获取原文
获取原文并翻译 | 示例
           

摘要

The weak electron-hole pair separation and transfer of the BiVO4 photoanode restrain its photoelectrochemical performance of water splitting. In this work, we focus on Zn doping to replace Bi-sites within BiVO4 nanocrystals to promote efficient charge separation and transfer. Theoretical and experimental results show that Zn doping induces oxygen vacancies with controllable content. Zn doping and oxygen vacancies not only shift the conduction and valance band positions of BiVO4, resulting a local built-in electric field, but also increase the carrier density, which would be beneficial for charge separation and transfer. In the meantime, water adsorption on Bisites is also activated, which would help water splitting. As a result, these contributions synergistically enhance photoelectrochemical performance with the incident photon-to-current conversion efficiency (IPCE) of 34% at 0.6 V vs. RHE, which is much higher than that of pristine BiVO4. Furthermore, by sequentially electrodepositing graphene quantum dots (GQDs) and cobalt phosphate (Co-Pi) nano-film, we have constructed a hybrid ZnBiVO4/GQDs/Co-Pi structure to broaden the light absorption and to enhance the stability, its IPCE reaches as high as 57% and photocurrent density achieves 3.01 mA cm(-2) at 0.6 V vs. RHE, which is 8.6 times of the pristine BiVO4, thus providing an efficient strategy for the structure design of BiVO4 based photoelectrodes.
机译:BIVO4光电仪的弱电子孔对分离和转移抑制了其水分裂的光电化学性能。在这项工作中,我们专注于Zn掺杂,以替换Bivo4纳米晶体中的双位点,以促进有效的电荷分离和转移。理论和实验结果表明,Zn掺杂诱导可控含量的氧空位。 Zn掺杂和氧气空位不仅移动了BIVO4的导通和遵守距离,导致局部内置电场,而且增加了载体密度,这将有利于电荷分离和转移。与此同时,还激活对均质的水吸附,这将有助于水分裂。结果,这些贡献协同增强了光电化学性能,在0.6V与rhe下的44%的入射光电流转化效率(IPCE)高于原始Bivo4的入射光子至电流转化效率(IPCE)。此外,通过顺序地电沉积石墨烯量子点(GQDS)和磷酸钴(Co-PI)纳米膜,我们已经构建了杂交ZnBivo4 / GQDS / Co-PI结构,以拓宽光吸收并增强稳定性,其IPCE到达高达57%和光电流密度以0.6V与Rhe实现3.01 mA cm(-2),这是原始BIVO4的8.6倍,从而为基于BIVO4的光电图的结构设计提供了有效的策略。

著录项

  • 来源
    《Chemical engineering journal》 |2019年第2019期|共9页
  • 作者单位

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    ShanghaiTech Univ Sch Phys Sci &

    Technol Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    ShanghaiTech Univ Sch Phys Sci &

    Technol Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

    Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Zn dopant; BiVO4; Oxygen vacancies; GQDs; Water splitting;

    机译:Zn掺杂剂;Bivo4;氧气空位;GQD;水分裂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号