首页> 外文期刊>Chemical engineering journal >Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism
【24h】

Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism

机译:通过非耐氧化途径通过污泥衍生的生物炭激活污泥衍生的生物炭的氧化氧固定的过氧硫酸盐活化:性能和机制

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, sludge-derived biochar (SDBC) was prepared and applied in peroxydisulfate (PDS) activation for sulfamethoxazole (SMX) degradation. Compared to the slight adsorption (16.5%) by SDBC alone and low direct oxidation (10.1%) by PDS alone, the SMX degradation rate was drastically increased to 94.6% in the combined SDBC/PDS system, suggesting that SDBC can successfully and efficiently activate PDS. The observed rate constant of the combined SDBC/PDS system was 48.3 times those of both PDS alone and SDBC alone processes. Material characterization and comparative experiments showed nitrogen doping and iron loading into the carbon layer might be the important active sites of the graphene-like SDBC material in PDS activation for SMX degradation. More importantly, singlet oxygen (O-1(2)), instead of traditional sulfate radicals or hydroxyl radicals, was the predominant reactive species of the SDBC/PDS system, which involved a new nonradical oxidation method for PDS activation by SDBC. The SMX degradation pathways by the nonradical O-1(2) oxidation were first studied by combining density functional theory (DFT) calculations with experimental results. Different from the well-known pathways of SMX through the cleavage of the sulfanilamide bond by the attack of radicals, the O-1(2) was likely to attack the aniline ring of SMX to initiate and accelerate the decomposition process. Finally, the energy cost analysis of the SDBC/PDS system further demonstrated the possible and economic application of the SDBC/PDS technique for SMX degradation. Thus, this study proposed a novel and economic method for PDS activation through a new nonradical oxidation pathway predominated by O-1(2), which also promoted the safe and efficient transformation of antibiotics or other contaminants by PDS activation processes.
机译:在该研究中,制备污泥衍生的生物炭(SDBC)并在过氧硫酸盐(PDS)活化中用于磺胺甲恶唑(SMX)降解。与单独的SDBC的轻微吸附(16.5%)相比,仅通过Pds的Pds直接氧化(10.1%),SMX降解速率在组合的SDBC / PDS系统中急剧增加到94.6%,表明SDBC可以成功和有效地激活PD。组合的SDBC / PDS系统的观察率常数仅为Pds的48.3倍,单独的SDBC单独使用。材料表征和对比实验表明氮掺杂和铁加载到碳层中可能是SMX降解的PDS活化中石墨烯样SDBC材料的重要活性位点。更重要的是,单线氧(O-1(2))代替传统的硫酸盐基团或羟基自由基,是SDBC / PDS系统的主要反应性物种,其涉及通过SDBC的PDS活化的新的非晶体氧化方法。首先通过将密度泛函理论(DFT)计算与实验结果组合来研究非亚型O-1(2)氧化的SMX劣化途径。通过通过攻击自由基的氨胺键的裂解不同的SMX途径不同,O-1(2)可能会发出SMX的苯胺环以引发并加速分解过程。最后,SDBC / PDS系统的能量成本分析进一步证明了SDBC / PDS技术对SMX降解的可能性和经济应用。因此,该研究提出了通过O-1(2)主导的新的非氧化途径的PDS活化的新颖和经济方法,该方法还通过PDS激活方法促进了抗生素或其他污染物的安全有效转化。

著录项

  • 来源
    《Chemical engineering journal》 |2019年第2019期|共11页
  • 作者单位

    Harbin Inst Technol State Key Lab Urban Water Resource &

    Environm Harbin Heilongjiang Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource &

    Environm Harbin Heilongjiang Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource &

    Environm Harbin Heilongjiang Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource &

    Environm Harbin Heilongjiang Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource &

    Environm Harbin Heilongjiang Peoples R China;

    Natl Cheng Kung Univ Dept Chem Engn Tainan Taiwan;

    Harbin Inst Technol State Key Lab Urban Water Resource &

    Environm Harbin Heilongjiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Biochar; Sulfamethoxazole; Peroxydisulfate; Nonradical; Singlet oxygen; Density Functional Theory (DFT);

    机译:生物炭;磺胺甲恶唑;过氧含硫酸盐;非播种;单线氧;密度函数理论(DFT);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号