首页> 外文期刊>Chemical engineering journal >Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation
【24h】

Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation

机译:揭示双量子点助催化剂在0d / 2d异质结光催化剂中促进光催化有机污染物降解的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogen peroxide (H2O2) was generally considered as an ideal energy carrier and environment-friendly oxidant to process environmental modification. Here, FeOOH QDs and CQDs was interspersed on g-C3N4 ultrathin nanosheet to promote H2O2 generation and in-situ decomposition. FeOOH QDs/CQDs/g-C3N4 composite (FCCN) exhibited excellent photoactivity for degrading oxytetracycline (OTC) under visible light illumination. The accelerated photoactivity is ascribed to the following merits: 1) the exciton dissociation interface and carrier transfer channel are fabricated to facilitate photoexcited electron transfer; 2) the photoexcited electron can be rapidly utilized by molecular oxygen to generate H2O2, resulting in facilitated molecular oxygen activation; 3) Fe3+ in FeOOH QDs is reduced to Fe2+ by photoexcited electron, and then reacts with generated H2O2 to produce center dot OH, thereby promoting photodegradation efficiency. The H2O2 generation yield of FCCN-2 composite was 224.24 mu mol h(-1) g(-1), which was higher than that of pure g-C3N4. 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and center dot O-2(-) quantitative determination displayed outstanding molecular oxygen activation capacity of hybrid composite. Moreover, 0D/2D heterojunction photocatalyst displayed weakened charge carrier recombination efficiency (0.0015 s-1) and expedited surface carrier transfer efficiency (41.01%) compared to gC(3)N(4) and CQDs/g-C3N4 photocatalyst. Finally, the photodegradation mechanism were rationally evaluated based on the experiment results.
机译:过氧化氢(H2O2)通常被认为是一种理想的能量载体和环保氧化剂,以加工环境改性。这里,FeOOH QDS和CQDS在G-C3N4超薄纳米片上穿插,以促进H2O2代和原位分解。 FEOOH QDS / CQDS / G-C3N4复合物(FCCN)在可见光照明下,表现出降解氧赤素(OTC)的优异的光度。加速的光度归因于以下优点:1)制造激子解离界面和载体转移通道以促进光透射电子转移; 2)通过分子氧可快速利用光透镜电子以产生H 2 O 2,得到促进的分子氧活化; 3)FeOOH QDS中的Fe3 +通过光透镜电子降低到Fe2 +,然后用产生的H 2 O 2反应以产生中心点OH,从而促进光降解效率。 FCCN-2复合材料的H 2 O 2生成产率为224.24μmolH(-1)g(-1),其高于纯G-C3N4。 3,3',5,5'-四甲基苯胺(TMB)氧化和中心点O-2( - )定量测定显示出杂化复合材料的出色分子氧活化能力。此外,与GC(3)N(4)和CQDS / G-C3N4光催化剂相比,0D / 2D异质结光催化剂显示的电荷载体复合效率(0.0015S-1)和加速表面载体转移效率(41.01%)。最后,基于实验结果,合理评估光降解机制。

著录项

  • 来源
    《Chemical engineering journal》 |2020年第2020期|共13页
  • 作者单位

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Environm Sci &

    Engn Changsha 410082 Hunan Peoples R China;

    Cent South Univ Forestry &

    Technol Fac Life Sci &

    Technol Changsha 410004 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Photocatalysis; H2O2 generation and decomposition; Molecular oxygen activation; Interface engineering; 0D/2D heterojunction;

    机译:光催化;H2O2代和分解;分子氧激活;界面工程;0d / 2d异质结;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号