首页> 外文期刊>Chemical engineering journal >Designing of multilevel-nanofibers-based organic-inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security
【24h】

Designing of multilevel-nanofibers-based organic-inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security

机译:基于多级纳米纤维的有机无机杂交凝胶电解质的设计能够采用卓越的离子运输能力和先进安全性的创新锂离子电池

获取原文
获取原文并翻译 | 示例
           

摘要

Separator plays a key background role in maintaining excellent ionic flux and avoiding the subject of internal short-circuit faults, which is thought as the key-part of lithium-ion battery. Hence, the characteristics of prominent thermal stability, eminent electrolyte affinity and laudable mechanical strength are of vital importance to guarantee energy density and security for lithium-ion cells. In this study, a natty poly(vinylidene fluoridehexafluoropropylene) (PVDF-HFP)-based gel membrane with multi-level nanofibers was resoundingly prepared for the first time through blend electrospinning of manganese dioxide (MnO2) particles and poly-m-phenyleneisophthalamide (PMIA) solution. The organic-inorganic hybrid multi-level gel electrolyte presented relatively high porosity, small aperture, superior electrolyte uptake and outstanding heat-resistance. Moreover, the mutual overlaps between the coarse fibers and the fine fibers within the multi-level nanofiber membrane provided a strong skeleton support to suppress the lithium-dendrites growth, resulting in an appealing safety for the resulting batteries. And the existence of the multi-level nanofibers can significantly accommodate more sufficient active sites and shorter diffusion channels to accelerate lithium ions migration. Depend on these benefits, the asassembled cells using the hybrid PMIA separator delivered superior ionic conductivity (2.27 x 10(-3) S cm(-1)) and steady anodic stability window (similar to 5.01 V). The most extraordinary was that the capacity retention of the resulting lithium-ion cell reached up to 90.5% after 200 cycles at 0.5 C, while the Celgard PP separator merely achieved to 70.2%. This work proved that the addition of functional inorganic particles similar with MnO2 in gel PVDF-HFP-doped PMIA membrane with multi-level structure could enhance the lithium ions transport capability and resist the growth of lithium dendrites, which would prompt a great development of lithium-ion cells with reassuring safety and high energy.
机译:分离器在维持优异的离子通量并避免内部短路故障的主题来发挥关键背景作用,这被认为是锂离子电池的关键部分。因此,突出的热稳定性,杰出电解质亲和力和可爱的机械强度的特性对于保证锂离子电池的能量密度和安全性至关重要。在该研究中,通过混合二氧化锰(MNO2)颗粒和聚-M-苯基二甲酰胺(PMIA ) 解决方案。有机 - 无机杂化多液体凝胶电解质呈现相对高的孔隙率,小孔径,优异的电解质吸收和出色的耐热性。此外,多级纳米纤维膜内的粗纤维和细纤维之间的互相重叠提供了强大的骨架载体以抑制锂 - 枝晶生长,导致所得电池的吸引力。并且,多级纳米纤维的存在可以显着适应更充足的活性位点和更短的扩散通道,以加速锂离子迁移。取决于这些益处,使用杂种PMIA分离器的ASAssembled细胞递送了优异的离子电导率(2.27×10(-3)Cm(-1))和稳定的阳极稳定性窗口(类似于5.01 V)。最特别的是,在0.5℃下,所得锂离子电池的容量保持达到90.5%,而Celgard PP分离器仅达到70.2%。这项工作证明,在凝胶PVDF-HFP掺杂的PMIA膜中添加具有多级结构的MNO2类似的功能无机颗粒可以增强锂离子传输能力并抵抗锂枝晶锂的生长,这将提示锂的巨大发展用于安全性和高能量的细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号