首页> 外文期刊>Chemical engineering journal >Nanointerface-driven pseudocapacitance tuning of TiO2 nanosheet anodes for high-rate, ultralong-life and enhanced capacity sodium-ion batteries
【24h】

Nanointerface-driven pseudocapacitance tuning of TiO2 nanosheet anodes for high-rate, ultralong-life and enhanced capacity sodium-ion batteries

机译:TiO2纳米片阳极的纳米面驱动的假型调谐高速,超强寿命和增强容量钠离子电池

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Titanium dioxide recently gained attention as sodium-ion battery anode material. However, its practical application is hindered by low specific capacity (similar to 150 mAh/g), and mediocre cycling stability. Here we report for the first time, nanointerface-driven Na-ion intercalation pseudocapacitance tuning as a strategy to substantially improve the performance of TiO2 anodes. This is achieved by tuning the crystal mismatch between anatase and bronze crystallites of hierarchical TiO2 nanosheets. Hybrid TiO2 nanosheets composed of similar to 10 nm sized anatase (similar to 85%) and bronze (similar to 15%) crystallites exhibited significantly higher pseudocapacitive Na-ion storage compared to phase-pure bronze and anatase TiO2 nanosheets. High specific capacity of 290 mAh/g (similar to 0.87 mol Na-ions) at a current density of 25 mA/g is obtained for this composition. Hybrid TiO2 maintained a specific capacity of 120 mAh/g even at a high current density of 1 A/g. Coulombic efficiency (similar to 100%) and cycling stability are outstanding, retaining 90% of the initial capacity after 2500 galvanostatic cycles. These electrochemical performances are noticeably superior to amorphous and crystalline TiO2 reported earlier. Mechanistic studies proved Na-ion intercalation pseudocapacitance without considerable structural changes. Excellent electrochemical performance of dual-phase hierarchical TiO2 nanosheets is credited to the superior Na-ion intercalation pseudocapacitance resulting from anatase-bronze nanointerfaces. The demonstrated strategy of nanointerface-driven pseudocapacitance tuning provides new opportunities for the designing of advanced Na-ion battery anodes.
机译:二氧化钛最近被关注为钠离子电池阳极材料。然而,其实际应用受到低特异性容量(类似于150mAh / g)的阻碍和平庸的循环稳定性。在这里,我们首次报告,纳米表面驱动的Na离子插入假偶像调谐作为基本上改善TiO2阳极性能的策略。这是通过调节锐钛矿和铜晶体的锐钛矿和铜晶体之间的晶体不匹配来实现。与相似的10nm尺寸的锐钛矿(类似于85%)和青铜(类似于15%)微晶组成的杂交TiO2纳米型纳米片组成,与相纯青铜和锐钛矿TiO2纳米片相比显着更高的假偶离Na离子储存。为该组合物获得电流密度为25mA / g的高比容量为290mAh / g(类似于0.87mol Na-离子)。杂交TiO2即使在1A / g的高电流密度下也保持了120mAh / g的特定容量。库仑效率(类似100%)和循环稳定性优异,在2500次的循环后保留了90%的初始容量。这些电化学性能显着优于前面的无定形和结晶TiO2。机械研究证明了Na离子嵌入假偶像,而无需相当大的结构变化。双相等级TiO2纳米片的优异电化学性能被归于由锐钛矿 - 青铜纳米件引起的优质Na离子插入假偶联。纳米脸驱动的假型探测调整的证明策略为设计高级NA离子电池阳极提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号