...
首页> 外文期刊>Chemical engineering journal >Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species
【24h】

Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species

机译:分散在多孔碳骨架中的均匀N-协调的单原子铁位,通过高价铁氧诺物种激活PM以获得高效的BPA降解

获取原文
获取原文并翻译 | 示例

摘要

Iron-mediated activation of peroxymonosulfate (PMS) has been widely investigated for recalcitrant pollutants. However, maximizing the dispersion degree of the active iron sites in the catalysts is still a great challenge and attracting tremendous attention. Herein, we demonstrated that well-dispersed single atomic Fe sites embedded into N-doped porous carbon (Fe-SA-N-C), which derived from chemically Fe-doped zeolitic imidazolate frameworks, could work as Fe-based catalyst for efficient catalytic oxidation of recalcitrant organics via PMS activation. As expected, Fe-SA-N-C exhibited remarkably higher degradation activity (8.1 times faster) to BPA (a model pollutant) than that of Fe based nanoparticles-loaded N-doped carbon (Fe-NP-N-C). The sufficient Fe-N-x sites with single Fe atom as the building units were proposed to be the main active sites for PMS activation. Based on that, unlike the traditional sulfate radical-based advanced oxidation processes, BPA degradation was achieved via high-valent iron-oxo species. More particularly, it could be used over a wide range of pH 3.0-7.5 with almost no loss of degradation efficiency. This study will provide insights into the design of heterogeneous Fenton-like catalysts.
机译:用于顽皮的污染物,广泛研究了铁介质的过氧键硫酸盐(PMS)的活化。然而,最大化催化剂中活性铁位点的分散度仍然是一个巨大的挑战并吸引巨大的关注。在此,我们证明嵌入到N掺杂的多孔碳(Fe-SA-NC)中的分散良好的单个原子油位点,其衍生自化学Fe掺杂的沸石咪唑酯型框架,可以作为有效催化氧化的Fe基催化剂。通过PMS激活rucalcrant有机物。正如预期的那样,Fe-SA-N-C表现出比Fe基纳米颗粒的N掺杂碳(Fe-NP-N-C)的碳(模型污染物更快)显着降解较高的降解活性(较快)。提出了作为建筑单元的单架Fe原子的足够的Fe-N-X位点是PMS激活的主要活性位点。在此基础上,与传统的硫酸盐自由基的先进氧化方法不同,通过高价铁氧诺物种实现BPA降解。更具体地说,它可以在宽范围的pH 3.0-7.5上使用,几乎没有降解效率的损失。本研究将提供对异质芬顿催化剂的设计的见解。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号