...
首页> 外文期刊>Chemical engineering journal >Controlled synthesis of ordered sandwich CuCo2O4/reduced graphene oxide composites via layer-by-layer heteroassembly for high-performance supercapacitors
【24h】

Controlled synthesis of ordered sandwich CuCo2O4/reduced graphene oxide composites via layer-by-layer heteroassembly for high-performance supercapacitors

机译:通过层杂合物对高性能超容量器的逐层杂核来控制合成有序夹心CUCO2O4 /缩减的石墨烯复合材料

获取原文
获取原文并翻译 | 示例

摘要

A novel binary composite consisting of CuCo2O4 nanocrystals and reduced graphene oxide is synthesized via a self-assembly approach combined with subsequent annealing. Cu-Co layered double hydroxides and graphite oxide are firstly exfoliated to charged monomolecular nanosheets. Controlled assembly between positively charged Cu-Co layered double hydroxides nanosheets and negatively charged graphene oxide affords the formation of sandwich-like precursor. After subsequent annealing, Cu-Co layered double hydroxides in the precursor is transformed into CuCo2O4 nanoparticles, while graphene oxide is reduced into reduced graphene oxide simultaneously. The channel architecture formed between CuCo2O4 nanoparticles and alternating reduced graphene oxide nanosheets provides a fast diffusion access for reaction species. The resultant composite delivers an initial specific capacitance of 291 F g(-1) (or 40.4 mA h g(-1)) with potential ranging from 0.05 V to 0.55 V at 1Ag(-1). In Particular, the specific capacitance of the composite reaches 389 F g(-1) (or 54 mA h g(-1)) at 1200th cycle and maintains no decay after extending to 5600 cycles. CuCo2O4 in the composite achieves a high specific capacitance of 978 F g(-1) (or 136 mA h g(-1)) at 3Ag(-1) if the weight percentage of components is corrected. In addition, the crucial influence of microstructures of the composite on its capacitive behaviors is deeply investigated by corresponding characterizations.
机译:通过自组装方法合并与随后的退火合成的新型二元复合物由Cuco2O4纳米晶体和还原的石墨烯氧化物组成。将Cu-Co层双氢氧化物和石墨氧化物首先剥离到带电的单体分子纳米片中。带正电荷的Cu-Co层双氢氧化物纳米片和带负电荷的石墨烯氧化物之间的控制组件提供了夹心状前体的形成。在随后的退火后,将前体中的Cu-Co层双氢氧氧化物转化到Cuco2O4纳米颗粒中,而石墨烯氧化物同时还原成氧化石墨烯氧化物。在Cuco2O4纳米颗粒和交替的石墨烯氧化物纳米片之间形成的通道结构提供了用于反应物种的快速扩散访问。所得复合材料可提供291°G(-1)(或40.4 mA H(-1))的初始特异性电容,其潜在范围为0.05V至0.55V(-1)。特别地,复合材料的特定电容在1200周期的循环中达到389fg(-1)(或54mA h g(-1)),并且在延伸到5600次循环之后保持衰减。如果校正组分的重量百分比,则复合材料中的Cuco2O4在3AG(-1)时达到978fg(-1)(或136mA H(-1))的高比电容。此外,通过相应的表征深受研究复合材料微观结构对其电容性行为的关键影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号