首页> 外文期刊>Chemical engineering journal >Simultaneous Laser Doppler Velocimetry and stand-off Raman spectroscopy as a novel tool to assess flow characteristics of process streams
【24h】

Simultaneous Laser Doppler Velocimetry and stand-off Raman spectroscopy as a novel tool to assess flow characteristics of process streams

机译:同时激光多普勒速度和脱扣拉曼光谱作为评估过程流的流动特性的新型工具

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphical abstractDisplay OmittedHighlights?New combined method for simultaneous measurement of concentration and velocity.?Examining and testing proof of concept with LDV and Raman spectroscopy.?Performing CFD simulation to verify the approach.AbstractFlow characteristics of process streams are important in industrial chemical plants. Online measurement of physical and chemical properties of such streams like velocity, turbulence, chemical composition, and concentration, plays a key role in adjustment and optimization of industrial processes. In transient processes with steep changes in the concentration and velocity (e.g. mixing of fluid with different viscosities or multiphase flows) it is important to monitor process parameters at the same time and position to be able to iterpret them correctly. In this work, a novel method for simultaneous measurement of velocity, composition, and concentration relying on two well-known methods, Laser Doppler Velocimetry (LDV) and Raman spectroscopy is presented and tested. Both techniques were combined using the same laser as light source, thus making sure sampling from exactly the same position at the same time is achieved. Experiments on mixing of water and ethanol streams in a custom-built T-junction geometry were performed using LDV to obtain velocity and Raman spectroscopy to measure concentration using the suggested method. Results are compared against Computational Fluid Dynamics (CFD) simulations using models for mixing of miscible, multi-species liquids at different flow regimes. CFD predicts turbulent diffusion to be the dominant phenomena in mixing in the T-junction since the turbulent diffusion coefficient (?0.02?m2/s) is much higher than the molecular diffusion coefficient (?10?8?m2/s). A mean deviation of 8% between model and experiment for velocity and 10% for concentration evaluation was observed, which suggests the feasibility of this technique for simultaneous monitoring of process streams.]]>
机译:<![cdata [ 图形摘要 显示省略 突出显示 < CE:简单段ID =“SP0010”View =“全部”> 用于同时测量浓度和速度的新组合方法。 使用LDV和拉曼规格检查和测试概念证明镜镜。 执行CFD仿真以验证方法。 < / ce:abstract> 抽象 过程流的流动特性在工业化学设备中很重要。在线测量这种物流的物理和化学性质,如速度,湍流,化学成分和浓度,在工业过程的调整和优化中起着关键作用。在瞬态过程中,浓度和速度的陡峭变化(例如,用不同粘度或多相流的流体混合),重要的是在同一时间和位置监控工艺参数,以便能够正确迭代它们。在这项工作中,呈现了一种用于同时测量速度,组合物和浓度的新方法,依赖于两种众所周知的方法,激光多普勒速度(LDV)和拉曼光谱法。使用与光源相同的激光相同的激光来组合这两种技术,从而确保从同时从完全相同的位置采样。使用LDV进行定制T型接合几何形状中水和乙醇流混合的实验,得到速度和拉曼光谱,以使用所提出的方法测量浓度。使用模型与不同流动制度混合混合的模型与计算流体动力学(CFD)模拟进行比较。 CFD预测湍流扩散是在湍流扩散系数(Δ0.02≤0:Sup =“柱”> 2 / s)中的T-innction中混合中混合中的显性现象分子扩散系数(α10Δ8Δm 2 / s)。观察到速度和浓缩评估的模型和速度试验之间8%的平均偏差,这表明该技术同时监测过程流的可行性。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号