首页> 外文期刊>CERAMICS INTERNATIONAL >Microstructural, mechanical and thermal shock properties of triple-layer rot TBCs with different thicknesses of bond coat and ceramic top coat deposited onto polyimide matrix composite
【24h】

Microstructural, mechanical and thermal shock properties of triple-layer rot TBCs with different thicknesses of bond coat and ceramic top coat deposited onto polyimide matrix composite

机译:三层腐烂TBCS的微观结构,机械和热冲击性,具有不同厚度的粘合涂层和陶瓷顶部涂层沉积在聚酰亚胺基质复合材料上

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a triple-layer thermal barrier coating (TBC) of Cu-6Sn/NiCrAIY/YSZ was deposited onto a carbon fiber reinforced polyimide matrix composite. Effects of different thicknesses of YSZ ceramic top coat and NiCrA1Y intermediate layer on microstructural, mechanical and thermal shock properties of the coated samples were examined. The results revealed that the TBC systems with up to 300 mu m top coat thicknesses have clean and adhesive coating/substrate interfaces whereas cracks exist along coating/substrate interface of the TBC system with 400 mu m thick YSZ. Tensile adhesion test (TAT) indicated that adhesion strength values of the coated samples are inversely proportional to the ceramic top coat thickness. Contrarily, thermal shock resistance of the coated samples enhanced with increase in thickness of the ceramic coating. Investigation of the TBCs with different thicknesses of NiCrA1Y and 300 mu m thick YSZ layers revealed that the TBC system with 100 mu m thick NiCrA1Y layer exhibited the best adhesion strength and thermal shock resistance. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.
机译:在该研究中,将Cu-6Sn / Nicriy / YSZ的三层热阻挡涂层(TBC)沉积在碳纤维增强聚酰亚胺基质复合物上。 ysz陶瓷顶涂层和NiCra1Y中间层对涂覆样品的微观结构,机械和热冲击性质不同厚度的影响。结果表明,具有高达300μm顶层涂层的TBC系统具有清洁且粘合剂涂层/基板界面,而TBC系统的涂层/衬底界面存在裂缝,具有400μm厚YSZ。拉伸粘附试验(TAT)表明涂覆样品的粘附强度值与陶瓷顶部涂层厚度成反比。具体地,涂覆样品的热抗震性能随着陶瓷涂层的厚度而增强。具有不同厚度的NICRA1Y和300μm厚YSZ层的TBC的研究表明,具有100μm厚的NiCra1Y层的TBC系统表现出最佳的粘合强度和热抗震性。推测,粘合涂层的热失配胁迫和氧化是导致热冲击试验失效的主要因素。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号