...
首页> 外文期刊>CERAMICS INTERNATIONAL >Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe(3)O(4 )photocatalytic magnetic materials
【24h】

Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe(3)O(4 )photocatalytic magnetic materials

机译:ZnO,Fe3O4和ZnO @ Fe(4)光催化磁性材料评价细菌生物膜的生物相容性和生长抑制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Magnetic nanostructured materials have found numerous biomedical applications. However, the influence of a magnetic field on the inhibition of pathogenic microorganisms has been poorly explored. Zinc and Iron nano-structured oxides have been widely used due to their biocompatibility and their excellent optoelectronic and magnetic properties. Nevertheless, little effort has been devoted to demonstrate their antibacterial activity at doses that are not harmful to mammalians. In this work, ZnO, Fe3O4 (MNPs) and ZnO@Fe3O4 (NCs) were synthesized and fully characterized. The materials exhibit good antibacterial activity to inhibit the growth of Staphylococcus aureus (S. aureus) and Helicobacter pylori (H. pylori) both, as planktonic cells and as biofilms structures at low doses. The photocatalytic activity of the materials (NCs) was demonstrated when radiated suspensions of NCs and microorganisms (MOs) exhibited higher inhibition growth of MOs in comparison to non-radiated assays. The materials show better antibacterial activity for biofilm growth inhibition in comparison to commercially available antibiotics. Magnetic antimicrobial films were fabricated by in situ deposition of MNPs in Arabic gum (AG) solution. The films exert enhanced antibacterial activity against S. aureus growth due to Fe3+ lixiviation and magnetic disruption. Regarding the biocompatibility of the materials, ZnO modifies significantly biochemical parameters in Wistar rats after acute administration. Our results show that the composite ZnO@Fe3O4 at low doses: (a) exerts an optimum inhibition on the biofilm formation of microorganisms due to its synergetic activity of lixiviation of ions and oxidative activity; (b) good biocompatibility of the composite with living cells. These properties suit ZnO@Fe3O4 as potential candidates for the development of new anti-biofilm formulation.
机译:磁性纳米结构材料已发现许多生物医学应用。然而,磁场对致病性微生物抑制的影响已经探索。由于它们的生物相容性及其优异的光电和磁性,锌和铁纳米结构氧化物已被广泛使用。然而,很少努力致力于在对哺乳动物不危害的剂量下证明它们的抗菌活性。在这项工作中,ZnO,Fe3O4(MNP)和ZnO @ Fe3O4(NCS)被合成并完全表征。该材料表现出良好的抗菌活性,以抑制金黄色葡萄球菌(AU3SUS)和幽门螺杆菌(H.幽门螺杆菌)的生长,如氏菌细胞和低剂量下的生物膜结构。当与非辐射测定相比,当Ncs和微生物(MOS)的辐射悬浮液表现出较高的MOS的抑制生长时,对材料(NCS)的光催化活性进行了说明。与市售抗生素相比,该材料表明生物膜生长抑制的更好抗菌活性。通过在阿拉伯胶(Ag)溶液中原位沉积MNP来制造磁性抗微生物膜。由于Fe3 +铅导致和磁性破坏,薄膜对S. aureus生长产生增强的抗菌活性。关于材料的生物相容性,ZnO在急性施用后的Wistar大鼠中显着改变生化参数。我们的研究结果表明,由于其协同活性的离子和氧化活性的协同活性,复合ZnO @ Fe3O4在低剂量下对微生物形成的生物膜形成最佳抑制; (b)具有活细胞的复合材料的良好生物相容性。这些属性ZnO @ Fe3O4作为开发新的抗生物膜配方的潜在候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号