...
首页> 外文期刊>Biophysical Journal >Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts
【24h】

Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts

机译:膜电位和心外膜变形的光学映射

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cardiac optical mapping uses potentiometric fluorescent dyes to image membrane potential (V-m). An important limitation of conventional optical mapping is that contraction is usually arrested pharmacologically to prevent motion artifacts from obscuring V-m signals. However, these agents may alter electrophysiology, and by abolishing contraction, also prevent optical mapping from being used to study coupling between electrical and mechanical function. Here, we present a method to simultaneously map V-m and epicardial contraction in the beating heart. Isolated perfused swine hearts were stained with di-4-ANEPPS and fiducial markers were glued to the epicardium for motion tracking. The heart was imaged at 750 Hz with a video camera. Fluorescence was excited with cyan or blue LEDs on alternating camera frames, thus providing a 375-Hz effective sampling rate. Marker tracking enabled the pixel(s) imaging any epicardial site within the marked region to be identified in each camera frame. Cyan-and blue-elicited fluorescence have different sensitivities to V-m, but other signal features, primarily motion artifacts, are common. Thus, taking the ratio of fluorescence emitted by a motion-tracked epicardial site in adjacent frames removes artifacts, leaving V-m (excitation ratiometry). Reconstructed V-m signals were validated by comparison to monophasic action potentials and to conventional optical mapping signals. Binocular imaging with additional video cameras enabled marker motion to be tracked in three dimensions. From these data, epicardial deformation during the cardiac cycle was quantified by computing finite strain fields. We show that the method can simultaneously map V-m and strain in a left-sided working heart preparation and can image changes in both electrical and mechanical function 5 min after the induction of regional ischemia. By allowing high-resolution optical mapping in the absence of electromechanical uncoupling agents, the method relieves a long-standing limitation of optical mapping and has potential to enhance new studies in coupled cardiac electromechanics.
机译:心脏光学映射使用电位荧光染料与图像膜电位(V-M)。传统光学映射的一个重要限制是收缩通常是药理学上被逮捕,以防止运动伪像遮挡V-M信号。然而,这些试剂可以改变电生理学,并且通过消除收缩,还防止光学映射用于研究电气和机械功能之间的耦合。在这里,我们提出了一种在跳动心中同时映射V-M和心外膜收缩的方法。分离的灌注猪心脏染色染色,DI-4-anepps,基准标记物粘在外膜上进行运动跟踪。心脏在750赫兹与摄像机成像。在交替的相机帧上用青色或蓝色LED激发荧光,从而提供375Hz的有效采样率。标记跟踪使得在每个相机帧中的标记区域内的任何外膜区域的像素追踪使得。青色和蓝色引发的荧光对V-M具有不同的敏感性,但其他信号特征主要是运动伪影,是常见的。因此,采用相邻框架中的运动跟踪的外膜部位发出的荧光比除去伪像,离开V-M(激发率)。通过与单一的动作电位和传统的光学映射信号进行验证重建的V-M信号。双目成像与附加的摄像机启用标记运动,以便在三个维度中跟踪。通过这些数据,通过计算有限应变场来量化心脏周期期间的心外膜变形。我们表明该方法可以在左侧工作心脏制备中同时映射V-M和应变,并且在诱导区域缺血后的电气和机械函数的图像变化5分钟。通过允许在没有机电解耦剂的情况下允许高分辨率的光学映射,该方法缓解了光学映射的长期限制,并且具有增强耦合心电电机的新研究的可能性。

著录项

  • 来源
    《Biophysical Journal》 |2016年第2期|共14页
  • 作者单位

    Univ Alabama Birmingham Dept Biomed Engn Birmingham AL 35294 USA;

    Univ Alabama Birmingham Dept Biomed Engn Birmingham AL 35294 USA;

    Univ Alabama Birmingham Dept Med Birmingham AL 35294 USA;

    Univ Alabama Birmingham Dept Med Birmingham AL 35294 USA;

    Univ Alabama Birmingham Dept Biomed Engn Birmingham AL 35294 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号