...
首页> 外文期刊>Biophysical Journal >Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala-Ala-Ala
【24h】

Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala-Ala-Ala

机译:通过2D IR光谱法将肽构象整体精制:应用于Ala-Ala-Ala的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Characterizing ensembles of intrinsically disordered proteins is experimentally challenging because of the ill-conditioned nature of ensemble determination with limited data and the intrinsic fast dynamics of the conformational ensemble. Amide I two-dimensional infrared (2D IR) spectroscopy has picosecond time resolution to freeze structural ensembles as needed for probing disordered-protein ensembles and conformational dynamics. Also, developments in amide I computational spectroscopy now allow a quantitative and direct prediction of amide I spectra based on conformational distributions drawn from molecular dynamics simulations, providing a route to ensemble refinement against experimental spectra. We performed a Bayesian ensemble refinement method on Ala-Ala-Ala against isotope-edited Fourier-transform infrared spectroscopy and 2D IR spectroscopy and tested potential factors affecting the quality of ensemble refinements. We found that isotope-edited 2D IR spectroscopy provides a stringent constraint on Ala-Ala-Ala conformations and returns consistent conformational ensembles with the dominant ppII conformer across varying prior distributions from many molecular dynamics force fields and water models. The dominant factor influencing ensemble refinements is the systematic frequency uncertainty from spectroscopic maps. However, the uncertainty of conformer populations can be significantly reduced by incorporating 2D IR spectra in addition to traditional Fourier-transform infrared spectra. Bayesian ensemble refinement against isotope-edited 2D IR spectroscopy thus provides a route to probe equilibrium-complex protein ensembles and potentially nonequilibrium conformational dynamics.
机译:由于集合测定有限的数据和构象集合的内在快速动态,所以本质无序蛋白质的组合是实验挑战的。 Amide I二维红外(2D IR)光谱具有PICOSECOND时间分辨率,以根据探测无序蛋白质集合和构象动态的冻结结构集合。此外,酰胺I计算光谱的发展现在允许基于从分子动力学模拟中汲取的构象分布来定量和直接预测酰胺I光谱,从而提供与实验光谱的集合细化的途径。我们对Ala-Ala-Ala进行了对抗同位素编辑的傅里叶变换红外光谱和2D IR光谱和测试潜在因子的贝叶斯队的精细方法,并影响了集成精制质量的潜在因素。我们发现同位素编辑的2D IR光谱在Ala-Ala-Ala构象上提供了严格的约束,并且通过来自许多分子动力领域和水模型的不同现有分布返回一致的构象集合。影响集合改进的主导因素是光谱图的系统频率不确定性。然而,除了传统的傅里叶变换红外光谱之外,还可以通过掺入2D IR光谱来显着降低群体群体的不确定性。因此,贝叶斯合奏对同位素编辑的2D IR光谱进行细化,因此提供了探针均衡 - 复杂蛋白集合的途径,并且可能非核化构象动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号