...
首页> 外文期刊>Biochemistry >The Phe-Ile Zipper: A Specific Interaction Motif Drives Antiparallel Coiled-Coil Hexamer Formation
【24h】

The Phe-Ile Zipper: A Specific Interaction Motif Drives Antiparallel Coiled-Coil Hexamer Formation

机译:PHE-ILE拉链:特定的相互作用图案驱动反平行卷曲线圈六聚体形成

获取原文
获取原文并翻译 | 示例
           

摘要

Coiled coils are a robust motif for exploring amino acid interactions, generating unique supramolecular structures, and expanding the functional properties of biological materials. A recently discovered antiparallel coiled-coil hexamer (ACC-Hex, peptide 1) exhibits a unique interaction in which Phe and Ile residues from adjacent α-helices interact to form a Phe-Ile zipper within the hydrophobic core. Analysis of the X-ray crystallographic structure of ACC-Hex suggests that the stability of the six-helix bundle relies on specific interactions between the Phe and Ile residues. The Phe-Ile zipper is unprecedented and represents a powerful tool for utilizing the Phe-Ile interactions to direct supramolecular assembly. To further probe and understand the limits of the Phe-Ile zipper, we designed peptide sequences with natural and unnatural amino acids placed at the Phe and Ile residue positions. Using size exclusion chromatography and small-angle X-ray scattering, we found that the proper assembly of ACC-Hex from monomers is sensitive to subtle changes in side chain steric bulk and hydrophobicity introduced by mutations at the Phe and Ile residue positions. Of the sequence variants that formed ACC-Hex, mutations in the hydrophobic core significantly affected the stability of the hexamer, from a ΔGuw of 2–8 kcal mol–1. Additional sequences were designed to further probe and enhance the stability of the ACC-Hex system by maximizing salt bridging between the solvent-exposed residues. Finally, we expanded on the generality of the Phe-Ile zipper, creating a unique sequence that forms an antiparallel hexamer that is topologically similar to ACC-Hex but atomistically unique.]]>
机译:<![cdata [ src ='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/2017/bichaw.2017.56.issue-40/acs.biochem.7b00756/ 20171004 / Images / Medium / Bi-2017-00756A_0010.gif“>盘绕线圈是一种鲁棒基因,用于探索氨基酸相互作用,产生独特的超分子结构,并扩大生物材料的功能性质。最近发现的反平行卷绕式六甲烷(Acc-Hex,肽 1 / b>)表现出独特的相互作用,其中来自相邻α-螺旋的PHE和ILE残基相互作用,以在疏水芯内形成PHE-ILE拉链。 ACC HEX的X射线晶体结构的分析表明,六螺旋束的稳定性依赖于PHE和ILE残基之间的特异性相互作用。 PHE-ILE拉链是前所未有的,并且代表利用PHE-ILE相互作用与直接超分子组件的强大工具。进一步探测和理解PHE-ILE拉链的界限,我们设计了肽序列,其具有置于PHE和ILE残基位置的天然和非天然氨基酸。使用尺寸排阻色谱和小角度X射线散射,我们发现,来自单体的适当组装来自单体的CONC-HEX的组装对PHE和ILE残基位置突变引入的侧链空间和疏水性的微妙变化敏感。在形成Acc-Hex的序列变体中,疏水核中的突变显着影响了六聚醚的稳定性,来自δ1~g w 2-8 kcal mol -1 。设计了另外的序列以进一步探测并通过最大化溶剂暴露的残基之间的盐桥接来增强ACC-Hex系统的稳定性。最后,我们扩展了Phe-Ile拉链的一般性,创建了一种独特的序列,该序列形成了一种拓扑上类似的反平行六角形,与Acc-Hex而不是原子独特。]>

著录项

  • 来源
    《Biochemistry》 |2017年第40期|共9页
  • 作者单位

    Department of Chemistry and Department of Chemical Engineering &

    Materials Science University of California Irvine Irvine California 92697-2575 United States;

    Department of Chemistry and Department of Chemical Engineering &

    Materials Science University of California Irvine Irvine California 92697-2575 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号