...
首页> 外文期刊>Biochemistry >Dynamic Characteristics of Guanosine-5′-monophosphate Reductase Complexes Revealed by High-Resolution 31P Field-Cycling NMR Relaxometry
【24h】

Dynamic Characteristics of Guanosine-5′-monophosphate Reductase Complexes Revealed by High-Resolution 31P Field-Cycling NMR Relaxometry

机译:高分辨率 31℃揭示鸟氨酸-5'-单磷酸盐还原酶复合物的动态特性 p野生循环NMR舒收测量法

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling ~(31)P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5′-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the ~(31)P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP~(+), whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP~(+). The presence of D_(2)O perturbed the relaxation of the ~(31)P nuclei in E·IMP·NADP~(+) but not in E·GMP·NADP~(+), providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2’-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of V _(max) by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2’-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.
机译:酶来调节结合底物和辅因子的动态的能力是催化的关键特征,但是在蛋白质的角度来看,动力学的作用已经很大程度上地接近。在这里,我们使用低估的NMR技术,细胞LA高分辨率场循环〜(31)P NMR弛豫测定法,以询问鸟嘌呤-5'-单磷酸盐还原酶(GMPR)中酶结合底物和辅因子的动态。这些实验揭示了与催化循环的脱氨基和氢化物转移步骤中的迈克莱斯配合物中的〜(31)p核相关的明显的结合模式和动态曲线。重要的是,基材被约束,辅助弧菌在脱胺络合物E·GMP·NADP〜(+)中更为动态,而基板更加动态,并且辅因子受到氢化物转移复合物E·Imp·NADP〜(+ )。 d_(2)o的存在扰动〜(31)p核在e·emp·nadp〜(+)中的弛豫,但不在e·gmp·nadp〜(+)中,提供了不同的结合模式的进一步证据不同的动态属性。 DIMP和DGMP是较差的基板,DGMP / DIMP的辅因子的动力学相对于GMP / IMP尺寸尺寸置于。底物2'-OH与ASP219相互作用,ASP219至ALA的突变将 V _(MAX)的值减小30倍。逆行地,ASP219的损耗使得衬底和辅因子的损失较小。这些观察结果表明,基板2'-OH和ASP219之间的相互作用协调迈克莱斯复合物的动态性质,并且这些动态通过催化循环的进展是重要的。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号