...
首页> 外文期刊>Analog Integrated Circuits and Signal Processing >Coupled-field FEM nonlinear dynamics analysis of continuous microsystems by non-incremental approach
【24h】

Coupled-field FEM nonlinear dynamics analysis of continuous microsystems by non-incremental approach

机译:连续微系统耦合场有限元非线性动力学的非增量分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper deals with numerical prediction of the nonlinear dynamic behaviour of electromechanical continuous microsystems, in presence of large displacements. Finite Element Method (FEM) is applied, by following so-called "sequential" approach, based on the solution in series of coupled electromechanical problem. In spite of tested approaches available in the literature, a "non-incremental" method is developed to enhance the performances of numerical tools. In practice, for microelectrostatic beam actuators, the total voltage may be applied once, in only one step, instead of by small increments. Non-incremental approach is based on two features. A special non-incremental beam element is introduced to deal with so-called geometrical nonlinearity of microbeam, caused by large displacement. It allows computing the total displacement of a cantilever microbeam, by integrating local rotation and axial deformation of cross-section, by avoiding to refer to the assumption of small displacement. Proposed procedure includes a preliminary static nonlinear analysis, to find the equilibrium condition, then a computation of nodal voltages for the deformed shape and of electric load. Equations of motion are integrated in time, by Newmark's method, while at each step, Newton-Raphson approach finds the instantaneous equilibrium, by applying the total voltage, instead of a small incremental value. Results evidenced a fast convergence even for large initial deflection. Moreover, typical peculiarities of nonlinear dynamic system, like softening effect in frequency response and amplitude jumping are observed. The whole proposed approach is currently under experimental validation and improvement to include damping effects, to study the dynamic stability of the microsystem.
机译:本文对存在大位移的机电连续微系统的非线性动力学行为进行了数值预测。基于一系列耦合机电问题的解决方案,通过遵循所谓的“顺序”方法,应用了有限元方法(FEM)。尽管文献中提供了经过测试的方法,但仍开发了“非增量”方法来增强数值工具的性能。在实践中,对于微静电束致动器,总电压可以仅一步施加一次,而不是很小的增量。非增量方法基于两个功能。引入了一种特殊的非增量梁单元来处理由大位移引起的所谓的微束几何非线性。通过整合局部旋转和横截面的轴向变形,避免参考小位移的假设,它可以计算悬臂微梁的总位移。建议的过程包括初步的静态非线性分析,以找到平衡条件,然后计算变形形状和电负载的节点电压。运动方程通过Newmark方法在时间上进行积分,而在每一步中,Newton-Raphson方法都通过施加总电压而不是小的增量值来找到瞬时平衡。结果表明,即使对于较大的初始挠度,其收敛速度也很快。此外,还观察到了非线性动力系统的典型特性,例如频率响应中的软化效果和幅度跳跃。目前正在对整个提议的方法进行实验验证和改进,以包括阻尼效应,以研究微系统的动态稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号