...
首页> 外文期刊>材料試験技術 >Practical nano-indentation theory and experiments of the pyramidal indenter (1st. theoretical equation including both terms about the elastic deformation of the tester and the truncation of the round tip)
【24h】

Practical nano-indentation theory and experiments of the pyramidal indenter (1st. theoretical equation including both terms about the elastic deformation of the tester and the truncation of the round tip)

机译:实际纳米压痕理论与金字塔内贴图的实验(1ST。理论方程,包括关于测试仪弹性变形的两种术语和圆尖的截断)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the practical load range of the nano-indentation test with the pyramidal indenter, the influences of the elastic deformation of the tester and the truncation of the round tip on the measured displacements cannot be neglected. For this load range, following the practical nano-indentation theory, which includes both terms about the elastic deformation of the tester and the truncation of the round tip, is proposed. L{sub}M = (4/(3×(the square root of π)))×({K{sub}(0(Tri)) or K{sub}(0(Qua))})/(F(E){sub}(IS))×(δ{sub}t - C·L{sub}M + T)(δ{sub}r - C·L{sub}M) where, K{sub}(0(Tri)) = 3{sup}(3/4)/f(α{sub}(Tri)), f(α{sub}(Tri)) = [{sin(α{sub}(Tri)/2)}{sup}(-2) - {cos(π/6)}{sup}(-2)]{sup}(1/2), α{sub}(Tri): adjacent edge angle of the triangular pyramidal indenter, K{sub}(0(Qua)) = 2tan(β{sub}(Qua)/2), β{sub}(Qua): opposed face angle of the quadrangular pyramidal indenter, L{sub}M: load, δ{sub}t: measured indentation depth, δ{sub}r: measured elastic recovery displacement, C: spring constant of the tester. C·L{sub}M: elastic deformation of the tester, T: truncation of the round tip, E{sub}I, E{sub}S and μ{sub}I, μ{sub}S: Young's Moduli and Poisson's ratios of the indenter and the specimen, F(E){sub}(IS) = {(1 - μ {sub}I{sup}2)/E{sub}I + (1 - μ {sub}S{sup}2)/E{sub}S}: elastic parameter of the indenter and the specimen. This theory can be useful to analyze the practical nano-indentation test and also to calculate the mechanical properties of the small and thin specimens.
机译:在纳米压痕试验的实际负载范围内与金字塔内凹槽,测试仪弹性变形的影响和在测量的位移上的圆形尖端的截短。对于该负载范围,在实际的纳米压痕理论之后,提出了关于测试仪的弹性变形的两种术语和圆尖的截短。 l {sub} m =(4 /(3×(π平方根)))×({k {sub}(0(tri))或k {sub}(0(qua))})/(f (e){sub}(是))×(Δ{sub} t - c·m + l {sum} m + t)(Δ{sub} r - c·m} m)其中,k {sub}( 0(tri))= 3 {sup}(3/4)/ f(α{sub}(tri)),f(α{sub}(tri))= [{sin(α{sub}(tri)/ 2)}}} {sup}( - 2) - {cos(π/ 6)} {sup}( - 2)] {sup}(1/2),α{sub}(tri):三角形的相邻边角金字塔indenter,k {sub}(0(qua))= 2tan(β{sub}(qua)/ 2),β{sub}(qua):相对的正面金字塔indenter,l {sub} m:负载,Δ{sub} t:测量的缩进深度,Δ{sub} R:测量的弹性恢复位移,C:测试仪的弹簧常数。 c压痕和标本的比率,f(e){sub}(是)= {(1 - μ} i {sup} 2)/ e {sub} i +(1 - μ{sub} s {sup } 2)/ e {sub} s}:压头和样本的弹性参数。该理论可用于分析实际纳米凹口试验,并计算小型和薄标本的机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号