...
首页> 外文期刊>材料試験技術 >Practical nano-indentation theory and experiments of the pyramidal indenter (1st. theoretical equation including both terms about the elastic deformation of the tester and the truncation of the round tip)
【24h】

Practical nano-indentation theory and experiments of the pyramidal indenter (1st. theoretical equation including both terms about the elastic deformation of the tester and the truncation of the round tip)

机译:实用的纳米压痕理论和金字塔压头的实验(第一理论方程式,包括有关测试仪的弹性变形和圆头截断的术语)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the practical load range of the nano-indentation test with the pyramidal indenter, the influences of the elastic deformation of the tester and the truncation of the round tip on the measured displacements cannot be neglected. For this load range, following the practical nano-indentation theory, which includes both terms about the elastic deformation of the tester and the truncation of the round tip, is proposed. L{sub}M = (4/(3×(the square root of π)))×({K{sub}(0(Tri)) or K{sub}(0(Qua))})/(F(E){sub}(IS))×(δ{sub}t - C·L{sub}M + T)(δ{sub}r - C·L{sub}M) where, K{sub}(0(Tri)) = 3{sup}(3/4)/f(α{sub}(Tri)), f(α{sub}(Tri)) = [{sin(α{sub}(Tri)/2)}{sup}(-2) - {cos(π/6)}{sup}(-2)]{sup}(1/2), α{sub}(Tri): adjacent edge angle of the triangular pyramidal indenter, K{sub}(0(Qua)) = 2tan(β{sub}(Qua)/2), β{sub}(Qua): opposed face angle of the quadrangular pyramidal indenter, L{sub}M: load, δ{sub}t: measured indentation depth, δ{sub}r: measured elastic recovery displacement, C: spring constant of the tester. C·L{sub}M: elastic deformation of the tester, T: truncation of the round tip, E{sub}I, E{sub}S and μ{sub}I, μ{sub}S: Young's Moduli and Poisson's ratios of the indenter and the specimen, F(E){sub}(IS) = {(1 - μ {sub}I{sup}2)/E{sub}I + (1 - μ {sub}S{sup}2)/E{sub}S}: elastic parameter of the indenter and the specimen. This theory can be useful to analyze the practical nano-indentation test and also to calculate the mechanical properties of the small and thin specimens.
机译:在使用锥形压头进行纳米压痕测试的实际载荷范围内,不能忽略测试仪的弹性变形和圆头的截断对测得的位移的影响。对于此负载范围,建议遵循实用的纳米压痕理论,该理论既包括有关测试仪的弹性变形的术语,也包括圆头的截断。 L {sub} M =(4 /(3×(π的平方根)))×({K {sub}(0(Tri))或K {sub}(0(Qua))})/(F (E){sub}(IS))×(δ{sub} t-C·L {sub} M + T)(δ{sub} r-C·L {sub} M)其中,K {sub}( 0(Tri))= 3 {sup}(3/4)/ f(α{sub}(Tri)),f(α{sub}(Tri))= [{sin(α{sub}(Tri)/ 2)} {sup}(-2)-{cos(π/ 6)} {sup}(-2)] {sup}(1/2),α{sub}(Tri):三角形的相邻边角锥体压头,K {sub}(0(Qua))= 2tan(β{sub}(Qua)/ 2),β{sub}(Qua):四角锥体压头的相对面角,L {sub} M:载荷,δ{sub} t:测得的压入深度,δ{sub} r:测得的弹性回复位移,C:测试仪的弹簧常数。 C·L {sub} M:测试仪的弹性变形,T:圆头的截断,E {sub} I,E {sub} S和μ{sub} I,μ{sub} S:杨氏模量和泊松压头与试样的比值F(E){sub}(IS)= {(1-μ{sub} I {sup} 2)/ E {sub} I +(1-μ{sub} S {sup } 2)/ E {sub} S}:压头和试样的弹性参数。该理论对于分析实际的纳米压痕测试以及计算小型和薄型样品的机械性能可能是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号