首页> 外文期刊>Analysis Mathematica >Analytic theory of finite asymptotic expansions in the real domain. Part I: Two-term expansions of differentiable functions
【24h】

Analytic theory of finite asymptotic expansions in the real domain. Part I: Two-term expansions of differentiable functions

机译:实域有限渐近展开的解析理论。第一部分:微分函数的两项展开

获取原文
获取原文并翻译 | 示例
           

摘要

We establish a general analytic theory of asymptotic expansions of type (*) f(x)=a1φ{symbol}_n(x)+..+a_n(x) + o(φ{symbol}_n(x)) x → x_0, where the given ordered n-tuple of real-valued functions (φ{symbol}_1,..., φ{symbol}_n) forms an asymptotic scale at x_0 ∈ ??. By analytic theory, as opposed to the set of algebraic rules for manipulating finite asymptotic expansions, we mean sufficient and/or necessary conditions of general practical usefulness in order that (*) hold true. Our theory is concerned with functions which are differentiable (n - 1) or n times and the presented conditions involve integro-differential operators acting on f, φ{symbol}_1,..., φ{symbol}_n. We essentially use two approaches; one of them is based on canonical factorizations of nth-order disconjugate differential operators and gives conditions expressed as convergence of certain improper integrals, very useful for applications. The other approach starts from simple geometric considerations and gives conditions expressed as the existence of finite limits, as x → x_0, of certain Wronskian determinants constructed with f, φ{symbol}_1,..., φ{symbol}_n. There is a link between the two approaches and it turns out that some of the integral conditions found via the factorizational approach have geometric meanings. Our theory extends to more general expansions the theory of real-power asymptotic expansions thoroughly investigated in previous papers. In the first part of our work we study the case of two comparison functions φ{symbol}_1, φ{symbol}_2 because the pertinent theory requires a very limited theoretical background and completely parallels the theory of polynomial expansions.
机译:我们建立了(*)f(x)=a1φ{symbol} _n(x)+ .. + a_n(x)+ o(φ{symbol} _n(x))x→x_0的渐近展开的一般解析理论,其中给定有序n元组的实值函数(φ{symbol} _1,...,φ{symbol} _n)在x_0∈??处形成渐近标度。通过分析理论,与操纵有限渐近展开的代数规则相反,我们指的是具有一般实际实用性的充分和/或必要条件,以便(*)成立。我们的理论关注的是可微(n-1)或n次的函数,并且给出的条件涉及作用于f,φ{symbol} _1,...,φ{symbol} _n的整数微分算子。我们本质上使用两种方法。其中之一是基于n阶非共轭微分算子的规范分解,并给出了表示为某些不正确积分的收敛性的条件,这对应用非常有用。另一种方法是从简单的几何考虑开始,并给出表示为由f,φ{symbol} _1,...,φ{symbol} _n构成的某些Wronskian行列式有限极限的存在的条件,如x→x_0。两种方法之间存在联系,事实证明,通过分解方法发现的某些积分条件具有几何意义。我们的理论扩展到更一般的扩展,在先前的论文中对有功渐近扩展理论进行了深入研究。在工作的第一部分中,我们研究两个比较函数φ{symbol} _1,φ{symbol} _2的情况,因为相关理论要求非常有限的理论背景,并且完全平行于多项式展开式的理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号