首页> 外文期刊>American Museum Novitates >Development of the embryonic shell structure of Mesozoic ammonoids
【24h】

Development of the embryonic shell structure of Mesozoic ammonoids

机译:中生代铵盐的胚壳结构的发展

获取原文
获取原文并翻译 | 示例
       

摘要

Exceptionally well-preserved embryonic shells (ammonitellae) of the early Aptian ammonoid Aconeceras cf. trautscholdi Sinzov, 1870, preserved as coprolite remains from Symbirsk, Russia, were examined with scanning electron microscopy (SEM) to investigate the developmental sequence of the embryonic shell structure. Our SEM observations reveal that these shells can be classified into the following three groups with different wall microstructure: Group 1, with a thin (ca. 5 mu m), double-layered shell wall, consisting of inner prismatic and cuter homogeneous layers, the former of which is absent in the adapical portion and becomes thicker adorally; Group 2, with a three-layered shell wall that consists of inner prismatic, middle homogeneous, and outer prismatic layers, with tubercles on the outer layer; and Group 3, with a thick nacreous swelling (primary varix) on the anteroventral side near the aperture. The middle homogeneous layer of the embryonic shells of Group 2 is the same as the outer homogeneous layer in shells of Group I and may be composed of amorphous calcium carbonate (ACC). In embryonic shells of Group 3, the middle homogeneous layer is absent and there are voids instead. It may have been transformed into the inner prismatic layer or else dissolved during diagenesis. In modern Nautilus and gastropods, embryonic or larval shell development is initiated by the secretion of a cap-shaped, fully organic shell prior to the deposition of calcium carbonate. This stage is not preserved in the material examined, but probably existed in the Ammonoidea. Based on our observations and data from extant Nautilus and gastropods, we propose a model for the development of the embryonic shell structure of Mesozoic ammonoids, starting from secretion of an organic primary shell, followed by deposition of ACC and its transformation into the inner prismatic layer, and terminating in the deposition of a primary varix on the inside of the ventral and ventrolateral position of the shell just adapical of the aperture.
机译:早期Aptian氨类Aconeceras的保存完好的胚壳(氨纶)cf. trautscholdi Sinzov,1870,保留为来自俄罗斯Symbirsk的coprolite残留物,用扫描电子显微镜(SEM)进行了研究,以研究胚壳结构的发育顺序。我们的SEM观察表明,这些壳可以分为具有不同壁微结构的以下三组:第一组,具有薄的(约5微米)双层壳壁,由内部棱柱形和更均质的层组成,前者不存在于趾尖部分,而在后侧变厚。第2组,具有三层壳壁,由内棱形,中间均质和外棱形层组成,外层有结节;第三组,靠近孔的前腹侧有一层浓厚的珍珠质肿胀(初发静脉曲张)。组2的胚壳的中间均质层与组I的壳的外均质层相同,并且可以由无定形碳酸钙(ACC)组成。在第3组的胚壳中,没有中间的均质层,而是有空隙。它可能已经转变成内部棱柱层,或者在成岩过程中溶解了。在现代的鹦鹉螺和腹足动物中,胚胎或幼虫的壳发育是通过在碳酸钙沉积之前分泌一个帽状的完全有机的壳而开始的。此阶段未保存在所检查的材料中,但可能存在于Ammonoidea中。根据我们对现存鹦鹉螺和腹足类动物的观察和数据,我们提出了一种中生性铵盐的胚胎壳结构发育模型,该模型从分泌有机原生壳开始,然后沉积ACC并将其转化为内部棱柱层,并终止主静脉曲张在外壳的腹侧和腹外侧位置的内侧,恰好在孔的顶端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号