...
首页> 外文期刊>American Journal of Physiology >Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables.
【24h】

Model of beta-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables.

机译:β细胞线粒体钙处理和电活动模型。一,细胞质变量。

获取原文
获取原文并翻译 | 示例

摘要

We continue our development of a kinetic model of bursting electrical activity in the pancreatic beta-cell (J. Keizer and G. Magnus. Biophys. J. 56: 229-242, 1989), including the influence of Ca2+ handling by the mitochondria. Our minimal model of mitochondrial Ca2+ handling [G. Magnus and J. Keizer. Am. J. Physiol. 273 (Cell Physiol. 42): C717-C733, 1997] is expanded to include the D-glucose dependence of the rate of production of mitochondrial reducing equivalents. The Ca2+ dependence of the mitochondrial dehydrogenases, which is also included in the model, plays only a small role in the simulations, since the dehydrogenases appear to be maximally activated when D-glucose concentrations are sufficient to produce bursting. A previous model of ionic currents in the plasma membrane is updated using a recent experimental characterization of the dependence of the conductance of the ATP-sensitive K+ (KATP) current on adenine nucleotides. The resulting whole cell model is complex, involving 12 dynamic variables that couple Ca2+ handling in the cytoplasm and the mitochondria with electrical activity in the plasma and inner mitochondrial membranes. Simulations with the whole cell model give rise to bursting electrical activity similar to that seen in pancreatic islets and clusters of pancreatic beta-cells. The full D-glucose dose response of electrical activity is obtained if the cytosolic rate of ATP hydrolysis is a sigmoidal function of glucose. The simulations give the correct shape, period, and phase of the associated oscillations in cytosolic Ca2+, predict that the conductance of the KATP current oscillates out of phase with electrical activity [as recently observed in ob/ob mice (O. Larsson, H. Kindmark, R. Branstrom, B. Fredholm, and P.-O. Berggren. Proc. Natl. Acad. Sci. USA 93: 5161-5165, 1996)], and make other novel predictions. In this model, bursting results because Ca2+ uptake into mitochondria during the active phase reduces the mitochondrial inner membrane potential, reducing the rate of production of ATP, which in turn activates the KATP current and repolarizes the plasma membrane.
机译:我们继续开发胰腺β细胞中突然电活动的动力学模型(J. Keizer和G. Magnus。Biophys。J. 56:229-242,1989),包括线粒体对Ca2 +处理的影响。我们对线粒体Ca2 +处理的最小模型[G. Magnus和J. Keizer。上午。 J.生理学。 273(Cell Physiol.42):C717-C733,1997]被扩展以包括线粒体还原当量产生速率的D-葡萄糖依赖性。线粒体脱氢酶的Ca2 +依赖性(也包括在模型中)在模拟中仅起很小的作用,因为当D-葡萄糖浓度足以产生爆裂时,脱氢酶似乎被最大程度地激活。使用对ATP敏感的K +(KATP)电流对腺嘌呤核苷酸的依赖性的最新实验表征,更新了质​​膜中离子电流的先前模型。所得的全细胞模型很复杂,涉及12个动态变量,这些变量将细胞质和线粒体中的Ca2 +处理与血浆和线粒体内膜的电活动耦合在一起。用全细胞模型进行模拟会产生类似于在胰岛和胰β细胞簇中看到的爆发性电活动。如果ATP水解的胞质速率是葡萄糖的S形函数,则可以获得电活动的完整D-葡萄糖剂量响应。该模拟给出了胞质Ca2 +中相关振荡的正确形状,周期和相位,预测KATP电流的电导随电活动异相振荡(如近来在ob / ob小鼠中观察到的(O. Larsson,H. Kindmark,R.Branstrom,B.Fredholm和P.O.Berggren.Proc.Natl.Acad.Sci.USA 93:5161-5165,1996)],并做出其他新颖的预测。在此模型中,爆裂的结果是,由于在活动期Ca2 +吸收到线粒体中会降低线粒体内膜电位,从而降低ATP的产生速率,从而激活KATP电流并使质膜重新极化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号