首页> 外文期刊>ACS applied materials & interfaces >Redox-lnduced Enhancement in Interfacial Capacitance of the Titania Nanotube/Bismuth Oxide Composite Electrode
【24h】

Redox-lnduced Enhancement in Interfacial Capacitance of the Titania Nanotube/Bismuth Oxide Composite Electrode

机译:氧化还原诱导的二氧化钛纳米管/氧化铋复合电极的界面电容增强

获取原文
获取原文并翻译 | 示例
       

摘要

Bismuth oxide (Bi2O3) decorated titania nanotube array (T-NT) composite materials were synthesized by a simple, yet versatile electrodeposition method. The effects of deposition current density and time on morphology evolution of the bismuth oxide phase were analyzed. It was found that an optimum deposition condition in terms of current density and time could be reached to achieve uniform and equiaxed crystal morphology of the deposited oxide phase. The morphology, shape, size distribution, and crystal structure of the bismuth oxide phase were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic techniques. The electrochemical capacitance of the T-NT/Bi2O3 composites was studied by conducting cyclic voltammetry and galvanostatic charge—discharge experiments. These studies indicated that the capacitance behavior of the composite material was dependent on the morphology and distribution of the bismuth oxide phase. The capacitance was greatly enhanced for the composite having equiaxed and uniformly distributed bismuth oxide particles. The maximum interfacial capacitance achieved in this study was approximately 430 mF cm~(-2). Galvanostatic charge—discharge experiments conducted on the composite materials suggested stable capacitance behavior together with excellent capacitance retention even after 500 cycles of continuous charge—discharge operation,
机译:通过简单但通用的电沉积方法合成了氧化铋(Bi2O3)装饰的二氧化钛纳米管阵列(T-NT)复合材料。分析了沉积电流密度和时间对氧化铋相形态演变的影响。已经发现,就电流密度和时间而言,可以达到最佳的沉积条件,以实现所沉积的氧化物相的均匀且等轴的晶体形态。使用扫描电子显微镜(SEM),X射线衍射(XRD),X射线光电子能谱(XPS)和拉曼光谱技术评估了氧化铋相的形态,形状,尺寸分布和晶体结构。通过循环伏安法和恒电流充放电实验研究了T-NT / Bi2O3复合材料的电化学电容。这些研究表明,复合材料的电容行为取决于氧化铋相的形态和分布。对于具有等轴且均匀分布的氧化铋颗粒的复合材料,电容大大提高。在这项研究中获得的最大界面电容约为430 mF cm〜(-2)。在复合材料上进行的恒电流充电实验表明,即使经过500次连续充电放电操作,其电容性能也稳定,并具有出色的电容保持能力,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号