首页> 外文期刊>ACS applied materials & interfaces >Exciton Generation/Dissociation/Charge-Transfer Enhancement in Inorganic/Organic Hybrid Solar Cells by Robust Single Nanocrystalline LnP_xO_y (Ln = Eu, Y) Doping
【24h】

Exciton Generation/Dissociation/Charge-Transfer Enhancement in Inorganic/Organic Hybrid Solar Cells by Robust Single Nanocrystalline LnP_xO_y (Ln = Eu, Y) Doping

机译:鲁棒的单纳米晶LnP_xO_y(Ln = Eu,Y)掺杂在无机/有机混合太阳能电池中激子产生/解离/电荷转移增强

获取原文
获取原文并翻译 | 示例
           

摘要

Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron—hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron—hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO3 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0,2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of T1O2 and P3HT, but also meanwhile enlarging the band gap of T1O2 itself that permits one to inhibit electron—hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.
机译:低温溶液处理的光伏电池由于激子或电子空穴传输不良而效率低下。无机/有机混合太阳能电池虽然仍处于起步阶段,但迄今为止引起了极大的兴趣。增强激子离解或电子-空穴传输的一种有前途的方法是掺杂镧系磷酸根离子。然而,基本的光物理机制仍然知之甚少。在本文中,通过应用飞秒瞬态吸收光谱,我们成功地将热电子,低能电子,空穴传输与电子-空穴复合区分开。已经提供了具体的证据,镧系元素磷酸酯掺杂同时提高了热电子和“低能”电子从供体到受体转移的效率,但是空穴传输几乎保持不变。尤其是,热电子转移寿命从30.2 ps缩短到12.7 ps,即比纯TiO3受体快60%以上。这种改善归因于以下事实:TiO2的导带(CB)边缘能级提高了0.2 eV,而价带能级几乎保持不变,因此不仅缩小了T1O2和CB的CB能级之间的能量偏移。 P3HT,但同时也增大了T1O2本身的带隙,从而可以抑制TiO2中的电子-空穴复合。因此,业已证明,掺杂有镧系元素磷酸盐的TiO2 / P3HT本体-异质结太阳能电池是一种有前途的混合太阳能电池,因此可实现2.91%的显着功率转换效率。这项工作表明,镧系元素化合物离子可以有效地促进激子的产生,离解和电荷传输,从而增强光伏性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号