首页> 外文期刊>ACS applied materials & interfaces >Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T-2 MRI and Drug Delivery
【24h】

Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T-2 MRI and Drug Delivery

机译:合理分离聚合物囊泡的电晕和膜功能,以增强T-2 MRI和药物递送

获取原文
获取原文并翻译 | 示例
       

摘要

It is an important challenge to in situ grow ultrafine super-paramagnetic iron oxide nanoparticles (SPIONs) in drug carriers such as polymer vesicles (also called polymersomes) while keeping their biodegradability for enhanced T-2-weighted magnetic resonance imaging (MRI) and drug delivery. Herein, we present a new strategy by rationally separating the corona and membrane functions of polymer vesicles to solve the above problem. We designed a poly(ethylene oxide)-block-poly(e-caprolactone)-block-poly(acrylic acid) (PEO43-b-PCL98-b-PAA(25)) triblock copolymer and self-assembled it into polymer vesicle. The PAA chains in the vesicle coronas are responsible for the in situ nanoprecipitation of ultrafine SPIONs, while the vesicle membrane composed of PCL is biodegradable. The SPIONs-decorated vesicle is water-dispersible, biocompatible, and slightly cytotoxic to normal human cells. Dynamic light scattering, transmission electron microscopy, energy disperse spectroscopy, and vibrating sample magnetometer revealed the formation of ultrafine super-paramagnetic Fe3O4 nanoparticles (1.9 +/- 0.3 nm) in the coronas of polymer vesicles. Furthermore, the CCK-8 assay revealed low cytotoxicity of vesicles against normal L02 liver cells without and with Fe3O4 nanoparticles. The in vitro and in vivo MRI experiments confirmed the enhanced T-2-weighted MRI sensitivity and excellent metastasis in mice. The loading and release experiments of an anticancer drug, doxorubicin hydrochloride (DOX center dot HCl), indicated that the Fe3O4-decorated magnetic vesicles have potential applications as a nanocarrier for anticancer drug delivery. Moreover, the polymer vesicle is degradable in the presence of enzyme such as Pseudomonas lipases, and the ultrafine Fe3O4 nanoparticles in the vesicle coronas are confirmed to be degradable under weakly acidic conditions. Overall, this decoration-in-vesicle-coronas strategy provides us with a new insight for preparing water-dispersible ultrafine super-paramagnetic Fe3O4 nanoparticles with promising theranostic applications in biomedicine.
机译:在药物载体(例如聚合物囊泡(也称为聚合物小体))中原位生长超细超顺磁性氧化铁纳米粒子(SPIONs),同时保持其生物降解性以增强T-2加权磁共振成像(MRI)和药物的能力,这是一个重大挑战。交货。在本文中,我们提出了一种通过合理地分离聚合物囊泡的电晕和膜功能来解决上述问题的新策略。我们设计了聚(环氧乙烷)-嵌段-聚(ε-己内酯)-嵌段-聚(丙烯酸)(PEO43-b-PCL98-b-PAA(25))三嵌段共聚物,并将其自组装成聚合物囊泡。囊冠中的PAA链负责超细SPIONs的原位纳米沉淀,而由PCL组成的囊膜可生物降解。用SPIONs装饰的囊泡具有水分散性,生物相容性,并且对正常人细胞具有轻微的细胞毒性。动态光散射,透射电子显微镜,能量分散光谱和振动样品磁力计揭示了在聚合物囊泡的日冕中形成超细超顺磁性Fe3O4纳米颗粒(1.9 +/- 0.3 nm)。此外,CCK-8分析显示,在没有和有Fe3O4纳米颗粒的情况下,囊泡对正常L02肝细胞的细胞毒性较低。体外和体内MRI实验证实了小鼠中T-2加权MRI敏感性的增强和出色的转移。抗癌药盐酸阿霉素(DOX中心点HCl)的负载和释放实验表明,修饰Fe3O4的磁泡作为抗癌药递送的纳米载体具有潜在的应用。此外,在存在诸如假单胞菌脂肪酶的酶的情况下,聚合物囊泡是可降解的,并且证实了囊泡日冕中的超细Fe 3 O 4纳米颗粒在弱酸性条件下是可降解的。总体而言,这种囊冠装饰策略为我们提供了制备水分散型超细超顺磁性Fe3O4纳米颗粒的新见识,这些纳米颗粒在生物医学中具有广阔的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号