...
首页> 外文期刊>ACS applied materials & interfaces >Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries
【24h】

Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries

机译:还原石墨烯氧化物/锡锑纳米复合材料作为高级钠离子电池的负极材料

获取原文
获取原文并翻译 | 示例
           

摘要

Reduced graphene oxides loaded with tin antimony alloy (RGO-SnSb) nanocomposites were synthesized through a hydrothermal reaction and the subsequent thermal reduction treatments. Transmission electron microscope images confirm that SnSb nanoparticles with an average size of about 20-30 run are uniformly dispersed on the RGO surfaces. When they were used as anodes for rechargeable sodium (Na)-ion batteries, these as-synthesized RGO-SnSb nanocomposite anodes delivered a high initial reversible capacity of 407 mAh g(-1), stable cyclic retention for more than 80 cycles and excellent cycle stability at ultra high charge/discharge rates up to 30C. The significantly improved performance of the synthesized RGO-SnSb nanocomposites as Na-ion battery anodes can be attributed to the synergetic effects of RGO based flexible framework and the nanoscale dimension of the SnSb alloy particles (<30 nm). Nanosized intermetallic SnSb compounds can exhibit improved structural stability and conductivity during charge and discharge reactions compared to the corresponding individuals (Sn and Sb particles). In the meantime, RGO sheets can tightly anchor SnSb alloy particles on the surfaces, which can not only effectively suppress the agglomeration of SnSb particles but also maintain excellent electronic conduction. Furthermore, the mechanical flexibility of the RGO phase can accommodate the volume expansion and contraction of SnSb particles during the prolonged cycling, therefore, improve the electrode integrity mechanically and electronically. All of these contribute to the electrochemical performance improvements of the RGO-SnSb nanocomposite-based electrodes in rechargeable Na-ion batteries.
机译:通过水热反应和随后的热还原处理,合成了负载锡锑合金(RGO-SnSb)纳米复合材料的氧化石墨烯。透射电子显微镜图像证实平均尺寸为约20-30nm的SnSb纳米颗粒均匀地分散在RGO表面上。当它们用作可再充电钠(Na)离子电池的阳极时,这些合成的RGO-SnSb纳米复合阳极可提供407 mAh g(-1)的高初始可逆容量,稳定的循环保持超过80个循环和出色的在高达30C的超高充电/放电速率下的循环稳定性。合成的RGO-SnSb纳米复合材料作为Na离子电池阳极的性能显着提高,这可以归因于RGO基柔性框架的协同效应和SnSb合金颗粒的纳米级尺寸(<30 nm)。与相应的个体(Sn和Sb颗粒)相比,纳米金属SnSb化合物在充放电反应过程中可以表现出改善的结构稳定性和导电性。同时,RGO片材可以将SnSb合金颗粒紧密地锚固在表面上,不仅可以有效地抑制SnSb颗粒的团聚,还可以保持优异的电子传导性。此外,RGO相的机械柔韧性可以适应长时间循环过程中SnSb颗粒的体积膨胀和收缩,因此可以机械和电子方式改善电极的完整性。所有这些都有助于可充电Na离子电池中RGO-SnSb纳米复合材料基电极的电化学性能改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号