首页> 外文期刊>ACS applied materials & interfaces >Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy
【24h】

Analysis of Nanoporosity in Moisture Permeation Barrier Layers by Electrochemical Impedance Spectroscopy

机译:电化学阻抗谱分析水分渗透阻隔层中的纳米孔隙

获取原文
获取原文并翻译 | 示例
       

摘要

Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.
机译:无机水分渗透屏障中的水渗透是通过宏观缺陷/针孔和纳米孔发生的,纳米孔的尺寸接近水动力学直径(0.27 nm)。两种渗透路径都可以通过钙测试来确定,即通过费时且昂贵的光学方法确定通过阻挡层的水蒸气透过率(WVTR)。最近,我们已经表明,椭圆孔隙率法(即,椭圆偏振光谱法和等温吸附研究的结合)是一种有效的方法,可以对纳米孔隙度进行分类和量化,并将其与WVTR值相关联。然而,没有获得关于宏观缺陷或水通过阻挡层的动力学的信息,这对于评估阻挡层的质量都是必不可少的。在这项研究中,电化学阻抗谱(EIS)被证明是一种灵敏且通用的方法,可获取有关纳米多孔性和宏观缺陷,水分渗透和湿气阻隔层扩散性的信息,从而补充了通过EP和钙测试获得的阻隔性能表征。 EIS在通过等离子增强CVD沉积的薄SiO2势垒层上执行。它可以确定SiO2层中的相对吸水率,这与EP推断的纳米孔隙率含量相符。此外,通过EIS跟踪水的渗透动力学,并确定扩散率(D),并与文献值一致。此外,与EP不同,EIS数据显示对局部宏观缺陷的存在敏感,与钙测试过程中的屏障破坏有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号