首页> 外文期刊>ACS applied materials & interfaces >Polydopamine Microcapsules with Different Wall Structures Prepared by a Template-Mediated Method for Enzyme Immobilization
【24h】

Polydopamine Microcapsules with Different Wall Structures Prepared by a Template-Mediated Method for Enzyme Immobilization

机译:通过模板介导的酶固定方法制备具有不同壁结构的聚多巴胺微胶囊

获取原文
获取原文并翻译 | 示例
       

摘要

Microcapsules with diverse wall structures may exhibit different performance in specific applications. In the present study, three kinds of mussel-inspired polydopamine (PDA) microcapsules with different wall structures have been prepared by a template-mediated method. More specifically, three types of CaCO3 microspheres (poly(allylatnine hydrochloride), (PAH)-doped CaCO3; pure-CaCO3; and poly(styrene sulfonate sodium), (PSS)-doped CaCO3) were synthesized as sacrificial templates, which were then treated by dopamine to obtain the corresponding PDA-CaCO3 microspheres. Through treating these microspheres with disodium ethylene diamine tetraacetic acid (EDTA-2Na) to remove CaCO3, three types of PDA microcapsules were acquired: that was (1) PAH-PDA microcapsule with a thick (~600 nm) and highly porous capsule wall composed of interconnected networks, (2) pure-PDA microcapsule with a thick (~600 nm) and less porous capsule wall, (3) PSS-PDA microcapsule with a thin (~70 nm) and dense capsule wall. Several characterizations confirmed that a higher degree in porosity and interconnectivity of the capsule wall would lead to a higher mass transfer coefficient. When serving as the carrier for catalase (CAT) immobilization, these enzyme-encapsulated PDA microcapsules showed distinct structure-related activity and stability. In particular, PAH-PDA microcapsules with a wall of highly interconnected networks displayed several significant advantages, including increases in enzyme encapsulation efficiency and enzyme activity/stability and a decrease in enzyme leaching in comparison with other two types of PDA microcapsules. Besides, this hierarchically structured PAH-PDA microcapsule may find other promising applications in biocatalysis, biosensors, drug delivery, etc.
机译:具有不同壁结构的微胶囊在特定应用中可能表现出不同的性能。在本研究中,已通过模板介导的方法制备了三种具有不同壁结构的贻贝型聚多巴胺(PDA)微胶囊。更具体地说,合成了三种类型的CaCO3微球(聚(烯丙基丙氨酸盐酸盐),(PAH)掺杂的CaCO3;纯CaCO3;聚(苯乙烯磺酸钠),(PSS)掺杂的CaCO3)作为牺牲模板,然后将其作为牺牲模板用多巴胺处理得到相应的PDA-CaCO3微球。通过用乙二胺二乙酸二钠二钠(EDTA-2Na)处理这些微球以去除CaCO3,获得了三种类型的PDA微囊:(1)PAH-PDA微囊,其壁厚(〜600 nm)且具有高度多孔的囊壁(2)厚(〜600 nm)且囊壁少的纯PDA微囊,(3)薄(〜70 nm)且囊壁致密的PSS-PDA微囊。几个特征证实,囊壁的孔隙率和互连度越高,将导致传质系数越高。当用作过氧化氢酶(CAT)固定化的载体时,这些酶包封的PDA微胶囊显示出与结构相关的独特活性和稳定性。特别是,与其他两种类型的PDA微胶囊相比,具有高度互连网络壁的PAH-PDA微胶囊具有几个显着的优势,包括酶包封效率和酶活性/稳定性的提高以及酶浸出的减少。此外,这种分级结构的PAH-PDA微胶囊可能在生物催化,生物传感器,药物输送等方面找到其他有希望的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号