首页> 外文期刊>ACS applied materials & interfaces >Molecular Simulation for Gas Adsorption at NiO (100) Surface
【24h】

Molecular Simulation for Gas Adsorption at NiO (100) Surface

机译:NiO(100)表面气体吸附的分子模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Density functional theory (DFT) calculations have been employed to explore the gas-sensing mechanisms of NiO (100) surface on the basis of energetic and electronic properties. We have calculated the adsorption energies of NO2 H2S, and NH3 molecules on NiO (100) surface using GGA+U method. The calculated results suggest that the interaction of NO2 molecule with NiO surface becomes stronger and contributes more extra peaks within the band gap as the coverage increases. The band gap of H2S-adsorbed systems decrease with the increase in coverage up to 0.5 ML and the band gap does not change at 1 ML because H2S molecules are repelled from the surface. In case of NH3 molecular adsorption, the adsorption energy has been increased with the increase in coverage and the band gap is directly related to the adsorption energy. Charge transfer mechanism between the gas molecule and the NiO surface has been illustrated by the Bader analysis and plotting isosurface charge distribution. It is also found that that work function of the surfaces shows different behavior with different adsorbed gases and their coverage. The work function of NO2 gas adsorption has a hill-shaped behavior, whereas H2S adsorption has a valley-shaped behavior. The work function of NH3 adsorption decreases with the increase in coverage. On the basis of our calculations, we can have a better understanding of the gas-sensing mechanism of NiO (100) surface toward NO2, H2S, and NH3 gases.
机译:密度泛函理论(DFT)计算已被用来探索基于能量和电子性质的NiO(100)表面的气敏机理。我们已使用GGA + U方法计算了NiO(100)表面上的NO2 H2S和NH3分子的吸附能。计算结果表明,随着覆盖率的增加,NO2分子与NiO表面的相互作用变得更强,并在带隙内贡献了更多的额外峰。 H2S吸附系统的带隙随覆盖率的增加而减小,直至0.5 ML,并且1 ML时带隙不变,因为H2S分子被表面排斥。在NH3分子吸附的情况下,吸附能随着覆盖率的增加而增加,并且带隙与吸附能直接相关。气体分子与NiO表面之间的电荷转移机制已通过Bader分析和等值面电荷分布图得到了说明。还发现,表面的功函数在不同的吸附气体及其覆盖率下表现出不同的行为。 NO 2气体吸附的功函数具有山形的行为,而H 2 S吸附具有谷形的行为。 NH3吸附的功函数随着覆盖率的增加而降低。根据我们的计算,我们可以更好地了解NiO(100)表面对NO2,H2S和NH3气体的气敏机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号