首页> 外文期刊>ACS applied materials & interfaces >In-Situ-Reduced Synthesis of Ti3+ Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation
【24h】

In-Situ-Reduced Synthesis of Ti3+ Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation

机译:LED光照射下高光催化性能的Ti3 +自掺杂TiO2 / g-C3N4异质结的原位还原合成

获取原文
获取原文并翻译 | 示例
       

摘要

A simple one-step calcination route was used to prepare Ti3+ self-doped TiO2/g-C3N4 heterojunctions by mixture of H2Ti3O7 and melamine. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) technologies were used to characterize the structure, crystallinity, morphology, and chemical state of the as-prepared samples. The absorption of the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions shifted to a longer wavelength region in comparison with pristine TiO2 and g-C3N4. The photocatalytic activities of the heterojunctions were studied by degrading methylene blue under a 30 W visible-light-emitting diode irradiation source. The visible-light photocatalytic activities enhanced by the prepared Ti3+ self-doped TiO2/g-C3N4 heterojunctions were observed and proved to be better than that of pure TiO2 and g-C3N4. The photocatalysis mechanism was investigated and discussed. The intensive separation efficiency of photogenerated electron-hole in the prepared heterojunction was confirmed by photoluminescence (PL) spectra. The removal rate constant reached 0.038 min(-1) for the 22.3 wt % Ti3+ self-doped TiO2/g-C3N4 heterojunction, which was 26.76 and 7.6 times higher than that of pure TiO2 and g-C3N4, respectively. The established heterojunction between the interfaces of TiO2 nanoparticles and g-C3N4 nanosheets as well as introduced Ti3+ led to the rapid electron transfer rate and improved photoinduced electron-hole pair's separation efficiency, resulting in the improved photocatalytic performance of the Ti3+ self-doped TiO2/g-C3N4 heterojunctions.
机译:通过H2Ti3O7和三聚氰胺的混合物,采用简单的一步煅烧路线制备Ti3 +自掺杂TiO2 / g-C3N4异质结。 X射线衍射(XRD),透射电子显微镜(TEM),高分辨率透射电子显微镜(HRTEM),X射线光电子能谱(XPS),电子自旋共振(ESR)光谱和UV-Vis漫反射光谱( UV-vis DRS)技术用于表征所制备样品的结构,结晶度,形态和化学状态。与原始的TiO2和g-C3N4相比,制备的Ti3 +自掺杂TiO2 / g-C3N4异质结的吸收移至更长的波长区域。通过在30 W可见光发光二极管辐射源下降解亚甲基蓝,研究了异质结的光催化活性。观察到制备的Ti3 +自掺杂TiO2 / g-C3N4异质结增强了可见光的光催化活性,并证明其优于纯TiO2和g-C3N4。研究和讨论了光催化机理。通过光致发光(PL)光谱证实了在制备的异质结中光生电子空穴的强分离效率。 22.3 wt%Ti3 +自掺杂TiO2 / g-C3N4异质结的去除速率常数达到0.038 min(-1),分别比纯TiO2和g-C3N4高26.76和7.6倍。 TiO2纳米颗粒与g-C3N4纳米片的界面之间建立的异质结以及引入的Ti3 +导致了快速的电子传输速率并提高了光致电子-空穴对的分离效率,从而改善了Ti3 +自掺杂TiO2 /的光催化性能。 g-C3N4异质结。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号