首页> 外文期刊>Journal of Wind Engineering and Industrial Aerodynamics: The Journal of the International Association for Wind Engineering >Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components
【24h】

Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components

机译:使用额外的小规模组分抑制涡旋闭合箱梁的涡流振动的机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

VIV (vortex-induced vibration) suppression using aerodynamic countermeasures are critical for design of long-span bridges. Strong vertical VIVs were observed in a streamlined closed-box bridge girder subject to wind at an initial attack angle of +3 degrees. CFD simulation, and pressures and displacements measured in wind tunnel tests on a large-scale model (approximately 1:20) were analyzed to reveal the VIV-triggering mechanism for a bridge girder, as well as the VIV-suppression mechanism for bridge girders modified with typical small-scale additional components such as spoilers on crash barriers or guide vanes near maintenance traces. Spoilers can almost eliminate VIVs, while guide vanes can moderately mitigate them. Large-scale vortexes generated from flow separation at leading barriers and leading maintenance trails, referred to as separated vortexes and secondary vortexes, respectively, and called "double vortex mode" together, are responsible for VIVs of an unmodified girder. When spoilers were set on the barriers, the separated vortexes, and then the "double vortex mode" observed on the unmodified bridge girder, could be broken. This greatly reduced the correlation between local aerodynamic forces and general vortex-excited forces (VEFs), and thus the contribution of local aerodynamic forces to general VEFs on the model surface, which caused the VIVs to disappear. As for the unmodified girder, the "double vortex mode" is also responsible for vertical VIVs of a girder modified with guide vanes. This is due to the strong correlation between local aerodynamic forces and general VEFs. However, the phase lags between them have an overall offset of approximately 90 degrees from the approximate synchronous action. Furthermore, a significant decrease in RMS values of pressure coefficients on the model surface dramatically reduce the direct contribution of local aero-dynamic forces to general VEFs, especially in the downstream region of the upper surface, thus clearly
机译:使用空气动力学对策的VIV(涡旋诱导的振动)抑制对于长跨度桥梁设计至关重要。在初始攻击角度为+ 3度的初始攻击角度,在流线型闭合箱桥梁梁中观察到强垂直VIV。在大规模模型(大约1:20)上测量的CFD仿真和压力和位移,以揭示桥梁梁的VIV触发机制,以及修改桥梁的VIV抑制机制典型的小型额外部件,如扰流板上碰撞屏障或靠近维护痕迹的叶片。扰流板几乎可以消除VIV,而导向叶片可以缓解它们。从主要屏障和前导维护路径处的流量分离产生的大型涡旋分别称为分离的涡流和次级涡流,并称为“双涡模式”,负责未修改的梁的VIV。当扰流板设置在屏障上时,分离的涡旋,然后在未修饰的桥梁梁上观察到的“双涡旋模式”,可能会被破坏。这大大降低了局部空气动力与一般涡旋兴奋力(VEF)之间的相关性,因此局部空气动力对模型表面上的一般VEF的贡献,这导致VIVs消失。对于未修饰的梁,“双涡旋模式”也负责用导叶片改性的梁的垂直VIV。这是由于局部空气动力与一般vefs之间的强烈相关性。然而,它们之间的相位滞后从近似同步动作的总体偏移量大约90度。此外,模型表面上的压力系数的RMS值的显着降低显着降低了局部航空动力力对一般VEF的直接贡献,特别是在上表面的下游区域中,因此显然

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号