首页> 外文期刊>Biotechnology and Bioengineering >Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up
【24h】

Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up

机译:量化用于预测发酵规模的搅拌式微型生物反应器的功耗和氧转移特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Miniature parallel bioreactors are becoming increasingly important as tools to facilitate rapid bioprocess design. Once the most promising strain and culture conditions have been identified a suitable scale-up basis needs to be established in order that the cell growth rates and product yields achieved in small scale optimization studies are maintained at larger scales. Recently we have reported on the design of a miniature stirred bioreactor system capable of parallel operation [Gill et al. (2008); Biochem Eng 139:164176]. In order to enable the predictive scale-up of miniature bioreactor results the current study describes a more detailed investigation of the bioreactor mixing and oxygen mass transfer characteristics and the creation of predictive engineering correlations useful for scale-up studies. A Power number of 3.5 for the miniature turbine impeller was first established based on experimental ungassed power consumption measurements. The variation of the measured gassed to ungassed power ratio, PsIP g, was then shown to be adequately predicted by existing correlations proposed by Cui et al. [Cui et al. (1996); Chem Eng Sci 51:2631-2636] and Mockel et al. [Mockel et al. (1990); Acta Biotechnol 10:215-224]. A correlation relating the measured oxygen mass transfer coefficient, k(L)a, to the gassed power per unit volume and superficial gas velocity was also established for the miniature bioreactor. Based on these correlations a series of scale-up studies at matched k(L)a (0.06-0.11 s(-1)) and P-g/V (657-2,960 Wm(-3)) were performed for the batch growth of Escherichia coli TOP10 pQR239 using glycerol as a carbon source. Constant k(L)a was shown to be the most reliable basis for predictive scale-up of miniature bioreactor results to conventional laboratory scale. This gave good agreement in both cell growth and oxygen utilization kinetics over the range of k(L)a values investigated. The work described here thus gives further insight into the performance of the miniature bioreactor design and will aid its use as a tool for rapid fermentation process development.
机译:微型平行生物反应器作为促进快速生物过程设计的工具变得越来越重要。一旦确定了最有希望的菌株和培养条件,就需要建立合适的扩大规模基础,以便在小规模优化研究中获得的细胞生长速率和产物产量保持较大规模。最近,我们已经报道了能够并行操作的微型搅拌生物反应器系统的设计[Gill et al。 (2008);生物化学工程139:164176]。为了使微型生物反应器的结果能够按预期扩大规模,本研究描述了对生物反应器混合和氧气传质特性的更详细研究,并创建了对扩大规模的研究有用的预测性工程相关性。首次根据实验的未耗能功率测量结果确定了微型涡轮机叶轮的功率值3.5。 Cui等人提出的现有相关性表明,测得的瓦斯与未瓦解功率比PsIP g的变化可以充分预测。 [崔等人。 (1996); Chem Eng Sci 51:2631-2636]和Mockel等。 [Mockel等。 (1990);生物技术学报10:215-224]。对于微型生物反应器,还建立了将测得的氧气传质系数k(L)a与每单位体积的放气功率和表观气体速度之间的相关性。基于这些相关性,针对埃希氏菌的批量生长,在匹配的k(L)a(0.06-0.11 s(-1))和Pg / V(657-2,960 Wm(-3))上进行了一系列放大研究。大肠杆菌TOP10 pQR239,使用甘油作为碳源。常数k(L)a被证明是微型生物反应器结果可预测规模扩大到常规实验室规模的最可靠基础。这在所研究的k(L)a值范围内,在细胞生长和氧利用动力学方面都取得了良好的一致性。因此,此处描述的工作可进一步了解微型生物反应器设计的性能,并将有助于将其用作快速发酵过程开发的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号